
NASA CONTRACTOR
REPORT

N S CC 45 1 C"or . .)NASA CRLUSL nsN~'t Sp:18

N73--26 2 2

Unclas
.: Ft 3 '

G3/1 1

MARSHALL SYSTEM FOR AEROSPACE SYSTEM

SIMULATION (MARSYAS),
USER'S MANUAL
By A. Ventre, R. Sevigny, W. lMcCollum, and T. Balentine
Computer Sciences Corporation
8300 S. Whitesburg Drive
Huntsville, Alabama 35802

July i, 1973

Prepared for

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER
Marshall Space Flight Center, Alabama 35812

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

'I

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED

FROM THE BEST COPY FURNISHED US BY

THE SPONSORING AGENCY. ALTHOUGH IT

IS RECOGNIZED THAT CERTAIN PORTIONS

ARE ILLEGIBLE, IT IS BEING RELEASED

IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

I

T,-La^IL REPOrT n T TANIDARD TITLE pAGE

I. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO.

NASA CR-1242S8 A
4. TITLE AND SUBTITLE 5. REPORT DATE

Marshall System for Aerospace System Simulation (MARSYAS), July 1, 1973
User's Manual 6. PERFORMING ORGANIZATION CODE

7. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORr ¢

A. Ventre, R. Sevigny, W. McCollum, T. Balentine Technical Report #1
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO.

Computer Sciences Corporation
18. CONTRACT OR GRANT NO.

8300 S. Whitesburg Drive NAS8-21805
Huntsville, AL 35802

13. TYPE OF REPORT' & PERIOD COVERED

12. SPONSORING AGENCY NAME AND ADDRESS Contractor Report

National Aeronautics and Space Administration
Wlashington, D.C. 20546 14. SPONSORING AGENCY CODEWTashington, D. C. 20546

15. SUPPLEMENTARY NOTES

Work performed for Computation Laboratory, Science and Engineering Directorate

16, ABSTRACT : This document describes the capabilities of the Marshall System for Aero-

space System Simulation (MARSYAS) and how to use it.
The Marshall System for Aerospace System Simulation (MARSYAS) is a software system

that allows easy setup and control of the simulation of the dynamics of large physical

systems on a digital computer. It is particularly suited to the engineer who has little
experience in simulation and computer programming. The physical systems are modeled in

the form of block diagrams or equations. The blocks can have multiple inputs and multi-
ple outputs, and they can be nested to form hierarchies. The block diagrams can contain
transfer functions, nonlinear and logical functions, equations, analog computer elements

and FORTRAN programs. The input format of the equations can be combinations of non-
linear, time-varying differential equations and algebraic equations in their original

format. MARSYAS could also serve as a storage and retrieval system for models as a
basis for a "model configuration control" system on a central time-shared computer. The

language allows a standard description of models and easy modification of models stored

in a library using descriptive names as in engineering drawings. The outputs of the

simulation system can be not only time-responses but also other analysis data such as
frequency response, power spectrum and stability parameters.

Several integration modes can override the standard mode. Algebraic loops and dis-
continuities are identified and solved automatically.

The MARSYAS translator is written in FORTRAN running on the UNIVAC 1108 computer

under the EXEC 8 operating system.

17. KEY WORDS

Digital Simulation
Computer Language
Software
Computation Techniques

19. SECURITY CLASSIF. (of this report

U

18. DI/RIBUTI/N STATEM.NT __

. Ho"lzer

Director, Computation Laboratory

Unclassified-unlimited

20. SECURITY CLASSIF. (of this page)

U

21. NO. OF PAGES

177
- .3 (-i

-- -r
r-

MS FC - Form 3292 (Rev December 1972) C- o,- " or ale b~y National Techinical Information Service, Springfield, Viryiini 21 1 5

PREFACE

The Marshall System for Aerospace System Simulation (MARSYAS) has
been developed under the direction of Dr. H. Trauboth and has been in
use at the Marshall Space Flight Center for more than two years. The
software system is written in FORTRAN for the UNIVAC 1108/EXEC 8 computer
system and is now available for public use under file number MFS 22 672
at the NASA computer program library

COSMIC
112 Barrow Hall
University of Georgia
Athens, GA 30602

Publications explaining the mathematical foundation of MARSYAS can
be found in the Reference.

For further information concerning the material in this manual
contact:

Dr. Heinz Trauboth
Chief, Systems Analysis Branch
National Aeronautics and Space Administration
Computation Laboratory
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812
Telephone (205) 453-1397

or

W. L. McCollum
Project Leader, Senior Computer Scientist
Aerospace Systems Center
Computer Sciences Corporation
8300 S. Whitesburg Drive
Huntsville, Alabama 35802
Telephone (205) 453-2232

I

TABLE OF CONTENTS

Page

I. INTRODUCTION TO MARSYAS 6

A. General Description of MARSYAS 7

B. The MARSYAS Programming System 10

C. MARSYAS Program Control Statements 11

D. The Structure of the MARSYAS Language 12

E. How to Use MARSYAS - Basic Ideas 15

F. A Sample Problem 23

G. MARSYAS MATH REFERENCE 30

II. MODULAR STRUCTURE OF MARSYAS 34

A. Description Module 35

1. COMMENT Statement 38
2. CONNECT . 39
3. DEVICE 45
4. DISCONNECT 50
5. ELEMENTS 51
6. END 53
7. EQUATION .. 54
8. INPUTS .. 58
9. MODEL 59

10. NAMIE 60
11. OUTPUTS ... 61
12. PARAMETERIZE 62
13. SUBMODEL .. 64

B. Modification Module 67

1. DELETE Statement 70
2. END 72
3 MODIFY.... 73
4. SUBSTITUTE 74

C. Simulation Module * . . . 76

1. CLHANGE Statement 80
2. END 86
3. ESTIMATE 87

2-

TABLE OF CONTENTS (Continued)

Page

EXCITE Statement
FUNCTION . . .
INITIALIZE .o
INTEGRATE . . .
PARAMETERS .
SIMULATE . . .
STOP IF . . .
TERMINATE IF .
VARY GAIN . . .

D. Post Processing Module .

1.
2.
3.
4.
5.

. 106

END Statement . . .
FOURIER
PLOT
PRINT
SAMPLE

III. SOFTWARE STRUCTURE OF MARSYAS 122

A. Introduction 123

B. Overview 123

C. Limitations of MARSYAS 125

IV. MATHEiATICAL STRUCTURE OF MARSYAS 127

A. The State Space Approach 128

B. Numerical Integration Techniques 128

1. Runga-Kutta Method
2. Adams-Bashforth Method . . .
3. Euler's Method
4. Butcher's Method
5. Sarafyan Variable Step Method

130
130
131
132
133

C. Solution Schemes for Differential Equations 135

3

4.
5.
6.
7.
8.
9.

10.
11.
12.

89
91
94
97
100
101
102
103
104

108
109
111
].19
121

I

m

t

e

TABLE OF CONTENTS (Continued)

Page

V. OPERATION OF THE MARSYAS SYSTEM 137

A. Deck Setup for MARSYAS Operation on the Univac 1108
Computer Under EXEC VIII 138

B. MARSYAS Diagnostics 138

VI. EXAMPLES OF THE USE OF MARSYAS,.145

A. Mechanical Extension Device - Example A 146

B. Do Nothing System with Submodels - Example B 155

C. Vehicle Stabilization System - Example C 160

TABLE OF STANDARD ELEMENTS 163

TABLE OF STANDARD EXCITATION FUNCTIONS 173

REFERENCES .. 178

4

LIST OF FIGURES

Title

SIMULATION OF A MATHEMATICAL MODEL USING
MARSYAS .

ILLUSTRATION OF MARSYAS CODING

BLOCK DIAGRAM APPROACH TO SOLVING A SECOND ORDER
PROBLEM USING MARSYAS

EQUATION APPROACH TO SOLVING A SECOND ORDER
PROBLEM USING MARSYAS

STATEMENT OPERATORS USED IN DESCRIPTION MODULE

STATEMENT OPERATORS USED IN MODIFICATION MODULE.

STATEMENT OPERATORS USED IN SIMULATION MODULE .

STATEMENT OPERATORS USED IN POST PROCESSING
MODULE .

AXIS DESIGNATION FOR VARIOUS PLOT MNEMONICS . . .

EXAMPLE OF MULTIPLE GRIDS ON ONE FRAME

PLOT OF ONE VARIABLE AGAINST ANOTHER

Page

13

22

24

25

37

69

79

107

112

116

117

PLOT OF VARIABLE AGAINST TIME 118

OVERVIEW OF MARSYAS SOFTWARE SYSTEM 124

OVERVIEW OF MATHEMATICAL PROCESS 129

MATHEMATICAL MODEL OF MECHANICAL EXTENSION
DEVICE . 147

BLOCK DIAGRAM OF MECHANICAL EXTENSION DEVICE . 148

BLOCK DIAGRAM OF DO NOTHING SYSTEM 156

VEHICLE STABILIZATION SYSTEM BLOCK DIAGRAM . . . 161

5

Figure

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

SECTION I

INTRODUCTION TO MARSYAS

6

I. INTRODUCTION TO MARSYAS

A. General Description of MARSYAS

MARSYAS (Marshall System for Aerospace Simulation) was developed by

NASA's Computation Laboratory at Marshall Space Flight Center to furnish

engineers with a software system that allows quick and easy simulation

of physical systems on a digital computer.

MARSYAS is a simple, flexible language which can be coded by users

who are unfamiliar with computer programming. It is designed for the

engineer with little experience in simulation who desires to simulate

large physical systems. The language can be used to solve a system of

differential equations or to simulate control systems including analog

computer block diagrams or both simultaneously. Thus, the user has the

ability to mix differential equations with diagrams in his model. The

block diagrams can contain, among other things, adders, integrators,

transfer functions, multiple input/output nonlinear devices, algebraic

equations and nonlinear ordinary differential equations. A block dia-

gram is specified by the user-given names of its models and submodels,

inputs and outputs, element names, parameters (if any), and their inter-

connections. Submodels can be nested to any degree required. With

MARSYAS, no preset pattern of connecting elements is required. Elements

can be connected in pairs, groups or any manner desired by the user. A

large library of Standard Elements and Excitation Functions is part of

the MARSYAS system. DEVICE and FUNCTION statement operators allow the

user to construct unusual element or excitation functions as needed.

7

I A. GENERAL DESCRIPTION OF MARSYAS

MARSYAS is a flexible language in that, with few exceptions, there

is no rigid statement operator structure within a given module. Most

statements can be used without regard for the order in which they appear

within the modules. Depending upon the computer system in which MARSYAS

is installed, the user has the capability of storing models in a Func-

tional Data Base. The Fortran Object Program generated from the MARSYAS

source program can be extracted and run separately, if the user's com-

puting facility can accommodate this feature. When using CHANGE opera-

tors, the user has multiple simulation capability without the necessity

of either rewriting his model or resubmitting his deck.

An elaborate plotting system is part of the MARSYAS language allow-

ing the user nearly unlimited flexibility in specifying his graphical

output. Additionally, the Fast Fourier Transform of any output variable

can easily be obtained. A tabular listing of a model in the Functional

Data Base or of a model currently being run can be obtained using the

LIST operator.

Automatic features of MARSYAS include the detection and solution

of linear and nonlinear algebraic loops. For problems which contain

discontinuities, the MARSYAS system automatically changes integration

schemes to integrate through the discontinuity, unless instructed other-

wise by the user.

MARSYAS is designed in modular form so that modifications to the

system models can be made with a minimum of effort, In order to achieve

comprehensive analysis capability and effective computation, modern con-

trol theory is used as the mathematical foundation of MARSYASo The

8

I A. GENERAL DESCRIPTION OF MARSYAS

differential equations generated from block diagrams, or coded as equa-

tions, are rearranged internally into vector-matrix state equations

which are then solved.

The language is designed so that the user transmits to the computer

only the information essential to describe the mathematical model and

specify the simulation run.

MARSYAS is divided into four successive modules which describe inde-

pendent functions of the simulation. These modules are as follows:

Description Module

Modification Module (optional)

Simulation Module

Post Processing Module

The user has the ability to control some of the internal processing

of the simulation by specifying his numerical integration method, inte-

gration step size or even the truncation error. Normally, he need not

concern himself with these details since MARSYAS handles these details

automatically.

MARSYAS names can be up to 36 characters in length so that the same

names as found in engineering documentation can be used. The MARSYAS

alphabet consists of the letters A through Z, the numbers 0 through 9,

and the backward slash (\). There are no reserved words in MARSYAS.

9

I B. THE MARSYAS PROGRAMMING SYSTEM

B. The MARSYAS Programming System

The MARSYAS programming system consists of two basic components:

1. A Source Program which consists of a set of MARSYAS statements

which may contain a set of FORTRAN subprograms.

2. A Processor Program which pre-compiles the MARSYAS language

into a set of FORTRAN programs called the Object Program.

The Source Program is fed to the computer on cards. The MARSYAS

coding format is "free form" and information may be punched into any

card column, using as many cards as necessary to complete a statement.

Statement operators are always followed by a colon (:) and ended by a

dollar sign ($). A colon used without a statement operator repeats the

previous operator. Imbedded blanks in the coding are ignored. If FORTRAN

subprograms are used, the coding must adhere to the rules of FORTRAN.

The MARSYAS Processor Program converts the MARSYAS source language

into FORTRAN code. This FORTRAN code, also called the Object Program,

is then processed and executed by the computer operating system in the

same manner as any other FORTRAN source coding.

The MARSYAS processor program is written in FORTRAN V and, at the

present time, can be implemented only on a Univac 1108 computer. Since

the processor is modular in design, it can be modified so that the full

system can be installed on other large computers.

10

I C.o MARSYAS PROGRAM CONTROL STATEMENTS

C. MIRSYAS Program Control Statements

There are two program control statements necessary to control the

execution of the MARSYAS program. The BEGIN statement identifies the

MARSYAS system model being executed and the END statement marks the end

of the MARSYAS coding. The use of the BEGIN and END statements is illus-

trated in Figure 1. The names given to the system model must be identical

for the BEGIN and END statements. The general format for both is as

follows:

BEGIN: name $

MARSYAS Program

END: name $

The LIST operator is a third program control statement used to cre-

ate a tabular listing of a MARSYAS model currently being run or previously

stored in a Functional Data Base (if any).

The LIST statement will create a list of the following:

a) The model name.
b) Model input and output terminals with alternate names, if any.
c) Element mnemonics, names and alternate names, if any.
d) Parameter names and associated values.
e) Connections between elements and system input-output terminals.
f) A list of submodels with their inputs and outputs.

The general format for the LIST operator is as follows:

LIST: model name $

The LIST statement may be placed anywhere after the BEGIN statement

and before the SIMULATE statement, even within a Description or Modifica-

tion Module.

11

I D. TIE STRUCTURE OF TIE MARSYAS LANGUAGE

D. The Structure of the MARSYAS Language

Usually, engineers prefer to describe the system being simulated

using block diagrams since this form of "graphical" representation is

visually comprehensive. The blocks of the diagram can have multiple

inputs and multiple outputs and blocks imbedded within blocks. The low-

est level block is called an ELEMENT, the highest, a MODEL. A SUBMODEL

is a model imbedded within a MODEL.

A Description Module is used to describe the structure of a model

given in block diagram or equation form. It is headed by the operator

MODEL and terminated by an END$ statement. The ELEMENTS statement con-

tains the name of the element, its mnemonic, and its parameters.

ELEMENTS are devices which may be linear or nonlinear. A linear

element can be as simple as a constant multiplier or as complex as a

transfer function. Nonlinear elements are representations of either

algebraic equations or switching functions or memory devices such as

hysterisis. Frequently-used elements are listed in the Table of Standard

Elements at the back of the Manual. If an element needed is not found

in the Table of Standard Elements, a FORTRAN subroutine called a DEVICE

can be constructed to form the needed element. Parameters are con-

stants written in the format shown in the Table of Standard Elements

and are either numerical values or names. The numerical value of a named

parameter is given by the PARAMETERIZE Statement. The CONNECT State-

ment connects strings of inputs and outputs of elements, submodels,

system inputs, or system outputs, to form the system block diagram. For

12

I D. THE STRUCTURE OF THE MARSYAS LANGUAGE

FIGURE i SI~ULATION OF A MATHiEf.ATICAL MNODEL USING [,IJARSYAS
13

.1

I D. THE STRUCTURE OF THE MARSYAS LANGUAGE

elements or submodels having a single input and output, only the name

of the element or submodel appears in the CONNECT Statement. The INPUTS

Statement designates names of the inputs of the model; the OUTPUTS State-

ment designates names of the outputs of the model.

The Modification Module allows inserting, deleting, and disconnecting

of elements and submodels previously described in the Description Module

through the use of the SUBSTITUTE, DELETE and DISCONNECT Statements.

The Simulation Module completes the specifications of the system

being analyzed. The INITIALIZE Statement specifies the initial condi-

tions for the integrators and transfer functions. Excitation functions

applied at the system inputs are specified with EXCITE Statements. Fre-

quently used excitation functions are listed in the Table of Standard

Excitation Functions at the back of the Manual. If an excitation func-

tion needed is not found in this Table, a FORTRAN subprogram called a

FUNCTION can be constructed to form the needed excitation. The INTEGRATE

Statement specifies the integration method to be used if a method other

than the standard method is desired. The STOP IF and TERMINATE

IF Statements determine the condition(s) under which the simulation is

halted. A CHANGE Statement is used for performing repetitive simulations

without the need for dismantling the system model.

The Post Processing Module follows the Simulation Module and speci-

fies the format of data presentation to the MARSYAS processor. Both

tabular data and graphs are available for presenting the output data by

14

I D. THE STRUCTURE OF THE MARSYAS LANGUAGE

specifying the PRINT and PLOT statements, respectively. The printing

interval is specified in the SAMPLE Statement. A frequency analysis can

be obtained at any output terminal through the use of the FOURIER State-

ment. See Section II for a more detailed description of each of the

Modules mentioned in this section.

E. How to Use MARSYAS - Basic Ideas

The complete simulation of a model under the MARSYAS system is com-

posed of several phases or modules as shown in Figure 1. The following

brief description of Figure 1 will enable the user to follow the con-

struction of the simple example shown on the following pages. A detailed

explanation of the modular structure of MARSYAS can be found in Section II.

The BEGIN statement identifies the user-given MARSYAS program

name (Example: BEGIN: TEST RUN1$).

The optional FORTRAN DEVICE and FUNCTION statement box, which ap-

pears at the top of Figure 1, is used for placing unusual excite and ele-

ment descriptions not found in the standard MARSYAS library. In general,

the user-coded FORTRAN DEVICE and FUNCTION subprograms may appear any-

where within the MARSYAS program provided they appear before being

referenced in the MARSYAS coding. The safest approach, however, is to

place such subprograms ahead of the Description Module as shown to avoid

difficulty.

The Description Module is used to define the structure of the model.

There may be more than one Description Module in a MARSYAS program. It

15

I E. HOW TO USE MARSYAS - BASIC IDEAS

may be modified in a Modification Module. Whlen using the block diagram

problem formulation, six distinct statement operators must be specified,

in any order with the exception of MODEL and END which must be first and

last, respectively, as follows: MODEL name, INPUTS, OUTPUTS, ELEMENTS,

CONNECT statements and END. The MODEL name is user-defined and is ref-

erenced by the Simulation Module (Example: MODEL: MARSYAS ILLUSTRA-

TION MODEL$). The INPUTS and OUTPUTS statements define all the model

inputs and outputs. If the model has one input and one output whose

user-assigned names are U1 and Y1, respectively, the statements would

read as:

INPUTS: U1$

OUTPUTS: Yl$

The ELEMENTS statement(s) specifies all of the elements contained

within the model, such as adders, integrators, transfer functions, etc.

A complete list of MARSYAS elements appears in the Table of Standard

Elements, along with their mnemonics. For example, the mnemonic for an

integrator is IN and the mnemonic for an adder is AD. If the model con-

tains one adder and two integrators, the ELEMENTS statement would read:

ELEMENTS: AD, ADDER1$: IN, INTEGRATORi, INTEGRATOR2$

The CONNECT statement(s) connects the elements, inputs and outputs

of the model to form a complete circuit. Using the inputs, outputs, and

elements referred to above, the CONNECT statement could read:

CONNECT: U1, INTEGRATORI, ADDER1, INTEGRATOR2, Yl$

16

IE, HOW TO USE MARSYAS - BASIC IDEAS

The CONNECT statement is easy to visualize in the following sche-

matic:

U f
INTEGRATORI ADDER] INTEGRATOR2

For the simple model just shown, the complete Description module

is as follows:

MODEL: MARSYAS ILLUSTRATION MODEL$

INPUTS: Ul$

OUTPUTS: Y1$

ELEMENTS: AD, ADDER1$
: IN, INTEGRATOR1, INTEGRATOR2$

CONNECT: Ul, INTEGRATOR1, ADDERI, INTEGRATOR2, Yl$

END$

The END statement is the last statement to appear in the Description

Module. Every Module shown in Figure 1 must terminate with an END state-

ment.

The Simulation Module follows the Description Module. This module

begins with the SIMULATE statement. It references the main model name

being simulated as:

SIMULATE: MARSYAS ILLUSTRATION MODEL$

17

I E. HOW TO USE MARSYAS - BASIC IDEAS

SIMULATE must be the first and END the last statements in the Simu-

lation Module. The remaining statements described below may be located

anywhere within the Module, without regard to order. The Simulation

Module contains the following statements: EXCITE, INTEGRATE (optional),

TERMINATE IF or STOP IF, INITIALIZE, CHANGE (optional) and END.

The EXCITE statement is used to specify an excitation function on

a particular input. Usually, but not always, a Standard MARSYAS excita-

tion function is used. If an excitation function not listed in the Table

of Standard Excitation Functions is needed, the user may construct a

FORTRAN subprogram to do the job. This subprogram is called a FUNCTION

and is placed before the Description Module as previously discussed.

A typical EXCITE statement might read:

EXCITE: Ul, FSIN (2°0, 3°0, 4°0)$

where FSIN is the MARSYAS mnemonic for a sinusoid. The above EXCITE

statement says, "Excite input terminal U1 with 2 sin (3t + 4)°"

The INTEGRATE statement specifies the mode of integration to be used

in solving the model, If the INTEGRATE statement is omitted, the problem

will be solved using the Sarafyan variable-step method. If fourth-order

Runga-Kutta is desired, the INTEGRATE statement could read:

INTEGRATE: RK, TIMESTEP, 0.01$

where RK is an abbreviation for Runga-Kutta and TIMESTEP, 0.01 specifies

the integration interval. If the word TIMESTEP is omitted, a step size

of 0.01 is used automatically.

18

I E. HOW TO USE MARSYAS - BASIC IDEAS

It is usually necessary to terminate the problem solution when a

certain condition has been reached in one of the model parameters

or when a certain point in time is reached. If, for example, it is

desired to stop the solution after ten time units, one of the following

statements could be used:

TERMINATE IF: TIME .GT. 10.0$
or

STOP IF: TIME .GT. 10.0$

The INITIALIZE statement is used to impose initial conditions,

other than zero, on integrators and transfer functions. If, for example,

an initial condition of 3.2 were required on INTEGRATOR1 in the above

example, the statement would read

INITIALIZE: MARSYAS ILLUSTRATION MODEL, INTEGRATORI (3.2)$

When using the INITIALIZE statement, the model name as well as the

element name must be specified. If there are no initial conditions asso-

ciated with the problem, the INITIALIZE statement is omitted.

When it is necessary to make a succession of runs with different

parameter elements, a CHANGE statement may be used. CHANGE statements

are discussed in detail in Section II C.

19

I E. HOW TO USE MARSYAS - BASIC IDEAS

The END statement is the last statement to appear in the Simulation

Module. Summarizing the statements discussed above, the Simulation

Module for the simple example is as follows:

SIMULATE: MARSYAS ILLUSTRATION MODEL$

EXCITE: Ul, FSIN (2.0, 3.0, 4.0)$

INTEGRATE: RK, TIMESTEP, 0.01$

TERMINATE IF: TIME .GT. 10.0$

INITIALIZE: MARSYAS ILLUSTRATION MODEL, INTEGRATOR1 (3.2)$

END$

The POST PROCESSING Module follows the Simulation Module and is used

to specify which outputs to record, the time interval and the method of

presentation for viewing, that is, tables and/or graphs. In addition s a

frequency analysis can be specified at any output using the FOURIER state-

ment. The following statements are used in the POST PROCESSING Module:

PRINT, SAMPLE, PLOT, FOURIER, END. An example of the use of these state-

ments is as follows:

PRINT: Ul, Yl$

SAMPLE: STEP, 10o$

PLOT: LINEAR (0.0, 10.0, 1), U1, Yl$

END$

20

I E. HOW TO USE MARSYAS - BASIC IDEAS

As a consequence of the above statements, the MARSYAS processor

will tabulate Time, Ul, Y1 at every tenth integration step (STEP, 10)

and plot on separate sheets of linear graph paper (SC 4020 plotter) U1

and Y1 versus time in the time interval 0-10. As usual, the END state-

ment is the last to appear in the Module.

The very last statement to appear in the MARSYAS coding is a final

END name statement as:

END: TEST RUN1$

This is the counterpart of the BEGIN statement which is the first

statement to appear in the MARSYAS deck. Its purpose is to signal the

MARSYAS processor that there is no more MARSYAS coding.

Combining all of the above MARSYAS statements as shown in Figure 2

will emphasize the basic structure of the language and will enable the

user to follow the solution of the sample problem on the following pages.

A detailed description of all of the statement operators discussed in

this section will be found in Section II of the Manual.

21

IE, I¥OW TO USE MARSYAS - BASIC IDEAS

BEGIN: TEST RUN1$

MODEL: MARSYAS ILLUSTRATION MODELS

INPUTS: U1S

o OUTPUTS: Y1$

o ELEMENTS: AD, ADDERI$
I-=

ELEMENTS: IN, INTEGRATORI, INTEGRATOR2$

, CONNECT: Ul, INTEGRATORI, ADDERI, INTEGRATOR2, Yl$
Lu

END$

, SIMULATE: MARSYAS ILLUSTRATION MODEL$

EXCITE: Ul, FSIN (2.0, 3.0, 4.0)$

INTEGRATE: RK, TIMESTEP, 0.01$

, TERMINATE IF: TIME .GT. 10.0$

_J INITIALIZE: MARSYAS ILLUSTRATION MODEL, INTEGRATOR1 (3.2)$

ENDS

PRINT: U1, Y1$

V : SAMPLE: STEP, 10$
o UJ

0o ° PLOT: LINEAR (0.0, '10,0, 1), Ul, Y1$

END$

END: TEST RUN1$

FIGURE 2. ILLUSTRATION OF MARSYAS CODING

22

I F. A SAMPLE PROBLEM

r, A Sample Problem

Consider the simple mass-spring-dashpot system shown in the illus-

tration below.

'U

I x

K 9 B

The motion of the mass is described by the following differential

equation and initial conditions:

M9 + B +Kx U (1)

x(O) = 20.0 and x(O) 0 (2)

where M = 10.0, B = 2.5, K = 8.6, and U = sin t

There are two methods of solving this problem using MARSYAS:

(i) Equation (1) can be.transformed into a block diagram whose elements

will consist of two integrators, an adder, and three constant multipliers

or, (ii) the equation can be coded directly as shown above. The two

methods of coding are illustrated in Figures 3 and 4.

The EQUATION option appears to be the more straight-forward method

of solution for this particular problem in that the Description Module

requires less coding, However, larger systems would probably be solved

using the block diagram approach since more insight into the structure

of the problem is thereby gained.

23

IF. A SAMPLE PROBLEM

BEGIN: MARSYAS EXAMPLE$

MODEL: MASS SPRING DAMPER$
Lu

INPUTS: U$

o OUTPUTS:AD1OUT, XDOT, X$

z
o ELEMENTS: IN, IN1, IN2$: AD, ADI$ CM, CM1(2.5), CM2(0o10), CM3(8.6)$
I--

U CONNECT: AD1, AD1OUT$: U, AD1, CM2, IN1, IN2, CM3, -ADI$: IN1, XDOT$
Ur)
LU : IN1, CM1, -AD1$: IN2, X$

END$

SIMULATE: MASS SPRING DAMPER$

: EXCITE: U, FSIN (1.0, 1.0, 0.0)$
0

INTEGRATE: RK, TIMESTEP, 0.01$
0
, _ STOPIF: TIME ,GT. 5.0$

INITIALIZE: MASS SPRING DAMPER, iN2(20.0)$
::E

END$

Lu PRINT: X, XDOT, ADlOUT, U$
-) m

U SAMPLE: STEP, 1$
U 0

END$

END: MARSYAS EXAMPLE$

FIGURE 3. BLOCK DIAGRAM APPROACH TO SOLVING A SECOND
ORDER PROBLEM USING MARSYAS

24

I-

0
0-

+ K

CM3

IF, A SAMPLE PROBLEM

BEGIN: MARSYAS EXAMPLES

wu MODEL: MASS SPRING DAMPER, EQUATION$

INPUTS: U$

OUTPUTS: AD1OUT, XDOT, X\OUT$
0
- EQUATION: 1000* X"' + 2.5 * X' + 8.6 * X = U$

: AD 1 OUT- M * X"$: XDOT X'$
: X\OUT = X $

ENDS

L[SIMULATE: MASS SPRING DAMPERS

EXCITE: U, FSIN (1.0, 1.0, 0.0)$
O

INTEGRATE: RK, TIMESTEP, 0.01$
Z

STOPIF: TIME . GT. 5.0$

INITIALIZE: MASS SPRING DAMI-'ER, X(2O0.)$

- ENDS

L PRINT: X\OUT, XDOT, ADIOUT, U$

o uw SAMPLE: STEP, 1$
o o,

c END$
a.

END: MARSYAS EXAMPLES

FIGURE 4. EQUATION APPROACH TO SOLVING A SECOND ORDER
PROBLEM USING MARSYAS

25

I F. A SAMPLE PROBLEM

The program control statements BEGIN name and END name must appear

regardless of which method of coding is selected.' The name MARSYAS

EXAMPLE is selected to identify this MARSYAS simulation.

The following explanation of the coding which appears in Figures 3

and 4 should enable the user to become familiar with the MARSYAS language.

A complete description of each of the Modules and Statement operators

appears in Section II of this Manual.

Description Module

The name MASS SPRING DAMPER identifies the MODEL whose structure is

being described in the statements to follow. If SUBMODELS were referenced

in this MODEL, then additional Description Modules would be required to

describe the structure of each submodel. Notice that in Figure 4 the word

EQUATION follows the model name indicating that equations are to be used

in the MODEL. The excitation U is an input to the system and is so stated

in the INPUTS statement. Since we wish to observe the behavior of the

system being excited, the names X, XDOT and AD1OUT have been specified as

outputs. Generally, outputs can be at any point in the system so long as

they are specified in the OUTPUTS statement.

When the problem is simulated in block diagram form, all of the

elements and connections, as well as the inputs and outputs, must be

specified in a Description Module as shown in Figure 3. The constants

B, M and K are constant multiplier elements with names CM1, CM2 and CM3,

respectively. The numerical value of each constant multiplier appears

in parenthesis after its name in accordance with the format shown in

26

C

I F. A SAMPLE PROBLEM

the Table of Standard Elements. The two integrators in the block diagram

are elements with names INI and IN2, so that the total number of elements

in the block diagram is six. All of the information concerning these

elements is contained within the ELEMENTS statement shown in Figure 3.

IWhen elements are present, they must be connected together to form the

block diagram. This is done using a CONNECT statement. One important

rule that must not be violated when making connections is that redun-

dant connections are to be avoided. The same path must not be re-

traced. Since there is great flexibility in constructing CONNECT state-

ments, the user should always strive to keep it simple for "bookkeeping"

purposes. The first CONNECT statement in Figure 3 connects the output

of adder ADI to an output terminal AD1OUT. Note that the dollar sign ($)

terminates a string of connections. The next CONNECT statement (denoted

by the colon) traces the feed forward path and the lower feedback path,

all in one statement. This is done strictly for the sake of convenience

and speed of writing. This connection could have been effected using

many separate CONNECT statements, if desired. The next CONNECT statement

connects the output of integrator IN1 with output terminal XDOT. The

next statement traces the upper feedback path and the last statement con-

nects integrator IN2 with output terminal X. CONNECT statements are easy

to construct and should present no difficulty for the user. More informa-

tion on CONNECT statements can be found in Section II of this Manual.

27

I F. A SAMPLE PROBLEM

When the problem is simulated in EQUATION form, ELEMENTS and CONNECT

statements are unnecessary. All that is required is the EQUATION oper-

ator as shown in Figure 4. Each equation is terminated by a ($) sign.

The colon repeats the EQUATION operator for each equation.

The END$ statement terminates the Description Module.

Simulation Module

The SIMULATE statement name MASS SPRING DAMPER references the model

being simulated. The name is the same as the main MODEL name given in

the Description Module. The excitation function, sin t, is impressed

upon the input terminal U using the EXCITE statement whose format is

given in the Table of Standard Excitation Functions. The integration

method selected to solve this problem is Runga-Kutta with a step size of

0.01. This information is recorded in the INTEGRATE statement. The

STOP IF statement terminates the simulation after five time units. The

initial condition X(O) = 20.0 is specified in the INITIALIZE statement.

In Figure 3, the initial condition is placed on the integrator whereas

in Figure 4, X is initialized directly.

The END$ statement terminates the Simulation Module.

Post Processing Module

Since we wish to examine the system input and outputs, the PRINT

statement contains all of the names listed in the INPUTS and OUTPUTS

statement which are to be printed out. TIME will automatically be listed

28

I F. A SAMPLE PROBLEM

in the first column of each page of printout. The printing will occur

at each integration STEP as indicated in the SAMPLE statement. If the

SAMPLE statement is omitted, printing will occur at each integration

step.

The END$ statement terminates the Post Processing Module.

29

I G. MARSYAS MATH REFERENCE

G. MARSYAS MATH REFERENCE

When using the EQUATION option in the Description Module, mathe-

matical expressions may arise which allude to a quantity called a MATH

REFERENCE. The MARSYAS MATH REFERENCE library consists of the Standard

Elements, user-defined elements (DEVICES) and Standard Excitation Func-

tions. The form which these MATH REFERENCES take may be quite complex

since they may consist of mathematical expressions, mathematical opera-

tions or other MATH REFERENCES.

Suppose an equation contains a forcing function f(x,y,t) which can

be represented by a Standard Excitation Function. The general form of

the Standard Excitation Functions, as shown in the Table of Standard

Excitation Functions at the back of the Manual is as follows:

excitation function mnemonic (parameters) $

For use in an EQUATION as a MATH REFERENCE, this form must be

altered slightly to include TIME or an equivalent expression for time

as i

excitation function mnemonic (parameters, A)$

where A is either the word TIME or a mathematical expression from which

time can be computed. Usually, however, the user will simply insert the

word TIME in place of A. (See EXAMPLE (2) in EQUATION, Part II A.) The

user then associates each of the parameters required by the Standard

Excitation Function with the variables in f(x,y,t) as shown in EXAMPLE (1).

30

I G. MARSYAS MATH REFERENCE

EXAMPLE (1)

Suppose an equation contains a forcing function 5X sin(2X2 + 3Yt).

Using the Table of Standard Excitation Functions at the back of the

Manual, the MATH REFERENCE is coded as follows:

FSIN(5. * X, 3. * Y, 2.0 * X - 2, TINE)

where d1 = 5. * X, d2 = 3. * Y, and d3 = 2. * X f 2.

Next, suppose that an EQUATION contains a term which is to be repre-

sented by a Standard Element. This situation might arise when using

EQUATION in conjunction with a block diagram. In this case, the MATH

REFERENCE is represented in much the same way as with the Standard

Excitation Function except that we now use Standard Elements in place

of Standard Excitation Functions. The general form of the Standard

Elements as shown in the Table of Standard Elements at the back of the

Manual is as follows:

element mnemonic (parameters)$

For use as a MATH REFERENCE, this form must be altered slightly

to include a mathematical expression(s) for each input of the element,

as well as an integer indicating to which element output terminal the

EQUATION applies, as

element mnemonic (parameters, M1, M2, ..., N)

where Mi is a mathematical expression for each element input terminal

which may involve derivatives, other mathematical expressions or other

3i

I G. MARSYAS MATH REFERENCE

MATH REFERENCES. N is the integer indicating to which output terminal

the EQUATION applies.

If the element has only one output, the integer N may be omitted.

The user assigns numerical values to the indicated parameters (if any)

as required in the usual use of Standard Elements. See EXAMPLE (2).

Note in EXAMPLE (2) that, since there are no parameters associated

with an integrator element and only one output, both the parameters and

the integer N are omitted from the parenthesis. Additionally, only one

mathematical expression is needed since the integrator has only one in-

put. Notice that either method of coding OUTPUT1 is legitimate since

both are equivalent mathematically.

EXAMPLE (2)

Suppose a block diagram contains two integrators and one constant

multiplier as shown in the sketch below. Using the mnemonic for an

integrator, IN, as given in the Table of Standard Elements at the back

of the Manual, an equation for OUTPUT1 using a MATH REFERENCE is coded

as shown below.

f OUTPUT1

OUTPUTI

32

. IMARSYAS PMATH REFERENCE

EQUATION: Z" = U - 3.2 * Z' $

: OUTPUT1 = IN(Z") $

or

EQUAT ION: OUTPUT1 = IN(U - 3.2 * Z') $

33

I G.

SECTION II

MODULAR STRUCTURE OF MARSYAS

34

II. MODULAR STRUCTURE OF MARSYAS

A. Description Module

The function of the Description Module is to provide the MARSYAS

processor with a description of the structure of the system being simu-

lated. The system might be a mathematical representation of a complete

Space Shuttle, its engines or any one of its subsystems. The mathematical

representation could be in the form of a block diagram, a series of block

diagrams, a set of differential equations or a mixture of block diagrams

and equations.

A Description Module is a MARSYAS representation of a complete or

partially complete mathematical system. A MARSYAS program may contain

several Description Modules. A model is completely described in a

Description Module. A submodel is a model wholly contained within another

model. If a model contains one or more submodels, then each submodel's

structure must be described in a separate Description Module.

When a model is represented in block diagram form, its structure is

specified by its INPUTS, OUTPUTS, ELEMENTS, SUBMODELS and connections.

An input is any point in a model where a driving function is applied and

an output is any point where the behavior of the model is to be examined.

An element is any device whose input(s) and output(s) can be related by

algebraic or differential equations or based on logic. Each element

type, such as an adder or integrator, has a mnemonic, viz., AD and IN,

respectively. A library of Standard Elements is part of the MARSYAS

system and is given in the Table of Standard Elements at the back of

the Manual. A FORTRAN subprogram, called a DEVICE, can be constructed

35

'II Ao DESCRIPTION MODULE

by the user to simulate any element not found in the Table of Standard

Elements. Some elements contain parameters which can be numerical con-

stants or named constants. If the parameter constants are named, their

values are specified with PARAMETERIZE statements. The interconnections

among the system inputs, elements, submodels and outputs are specified

with CONNECT statements. Connect statements can be modified without

altering the original coding by using DISCONNECT statements. Alternate

names for models, elements, inputs, outputs or parameters can be assigned

using the NAIME statement. There are no reserved names (words) within the

MARSYAS system.

When a model is represented by a collection of differential equations,

the statement operators ELEMENTS, PARAMETERIZE, SUBMODEL, CONNECT,

DISCONNECT and NAME are not used. The EQUATION operator is used when

specifying equations. Equations may contain mathematical expressions

which consist of MARSYAS names, mathematical operators, numerical con-

stants and MATH REFERENCES. MATH REFERENCES are discussed in Section I G.

The order in which the above statements appear within a model

description is immaterial except that MODEL and END must be the first

and last statements, respectively. A detailed description of all of the

statement operators used in the Description Module appears in alphabeti-

cal order on the following pages. Figure 5 is a list of these operators

with a brief description of their function.

36 ·

.P

II A. DESCRIPTION MODULE

OPERATOR

CONNECT

DEVICE

DISCONNrECT

ELEMENTS

END

EQUATION

INPUTS

MODEL

FUNCTION

Specifies the interconnection of ele-
ments, input and output terminals and
submodels within the model.

Defines a non-standard element.

Cancels connections specified by a
previous CONNECT statement.

Specifies the mnemonic, names and
parameters of elements in a model.

Marks the end of a Description Module.

Specifies a model in terms of
equations.

Assigns names to the model input
terminals.

Marks the appearance of a Description
Module and names the model.

Assigns alternate names to units already
defined.

Assigns names to the model output terminals.

Assigns a numerical value to a parameter
which was given a name instead of a num-
ber in an ELEMENTS statement. Also used
to change the value of a parameter as-
signed a numerical value by an ELEMENTS
or PARAMETERIZE statement.

OUTPUTS

PARAMETERIZE

SUBMODEL Assigns a name to a submodel and its
associated inputs and outputs.

* |Allows comments for the user.

FIGURE 5. STATEMENT OPERATORS USED IN THE DESCRIPTION MODULE

37

II A. DESCRIPTION MODULE

COMbENT

FORMAT -

* message or blanks $

COMMENTARY -

The comment statement may appear anywhere in any module and may

extend over as many source cards as are necessary. The source cards

are printed exactly as read without the editing common to all other

MARSYAS statements. The asterisk can appear in any card column.

EXAMPLE

* This is a comment card $

38

II A. DESCRIPTION MODULE

CONNECT

FOILMAT -

CONNECT: namel, name2, name3, etc. $

COMMENTARY -

The CONNECT statement is used to describe the signal paths among

the elements, submodels and input and output terminals of the system.

The direction of the signal flow is implied by the order in which the

arguments of the connection statement are given. CONNECT statements

must always begin as follows:

1. at an element output
or

2. at a system input terminal

CONNECT statements must always end as follows:

1. at an element input
or

2. at a system output terminal

Since a system input terminal is used to apply a signal, it must

be the first to occur in the CONNECT statement of which it is a part.

Similarly, since a system output name can only receive a signal, it can

only appear as the last name in a string of CONNECT statements. Redun-

dant connection paths are not allowed.

39

II A. DESCRIPTION MODULE

CONNECT (Cont'd.)

If a signal path goes through a submodel, it is only necessary to

specify the connections to and from the submodel. It is not necessary

to repeat the connections within the submodel which have previously been

described in that submodel's Description Module.

Every signal path which occurs within the model must be described

by a CONNECT statement. If a signal path branches, then the new path

is started at the point of branching. The CONNECT statement is not used

with the EQUATION statement.

EXAMPLE

INPUTi INX AD OUTPUT2

The CONNECT statement for the above simple circuit is as follows:

CONNECT: INPUT1, IN1, AD1, OUTPUT2$

EXAMPLE

Consider the following simple circuit:

A-~) B OUTPUT7
Iirr i i

40

II A. DESCRIPTION MODULE

CONNECT (Cont'd.)

The CONNECT statement reads as follows:

CONNECT: INPUT5, A, B, C, D, OUTPUT7$

: B, E, -A$

There are several permissible variations of this CONNECT statement

such as

CONNECT: INPUT5, A, B, E, -A

: B, C, D, OUTPUT7$

nThe intermediate dollar sign(s) may be omitted when using the colon

to repeat a statement operator as above.

Note that the CONNECT statement allows the use of a negative sign

on element inputs only. For example, -INPUT5 would not be permitted in

the above CONNECT statements.

When elements with multiple inputs and outputs are connected, the

element terminal numbers must be carefully noted when writing the CONNECT

statement.

41

II A. DESCRIPTION MODULE

CONNECT (Cont'd.)

EXAMPLE

Consider the following connections of system INPUT5, Al and B 1

with ELEMENTS, ML1 and IN4 and the connection of the output of element

ML1 with the system output, C1.

B1 I 1

ML1 1 noC1

Al2

The CONNECT statement could be coded as follows:

CONNECT: B1, IN4 l#MLl, MLl#l , Cl$

: Al, 2#MLl$

The two terms in the dotted box may be combined into one for ease

of writing. Thus l#MLl#l is equivalent to writing l#MLl, MLl#l.

The above connect statement reads as follows: "Connect input B1

to element IN4 and element IN4 to input #1 of element ML1 and connect

output #1 of element ML1 to output C1. Connect input Al to input #2 of

element MLl." Note that the second CONNECT statement, CONNECT: Al, 2#MLI$,

does not connect past input #2 of ML1, thus avoiding a redundant connection.

42 .

II. A. DESCRIPTION MODULE

CONNECT (Cont' d.)

Should the user desire, he can give names to the terminals of an

element using a NAME statement, then CONNECT using element names instead

of terminal numbers (see NAME).

EXAMPLE

Suppose that we wish to assign the names INPUT1, INPUT2, and OUTPUT

to the three terminals of ML1 in the previous example. The coding for

the NAME and CONNECT statements is as follows:

NAME: l#MLl, INPUT1$: 2#ML1, INPUT2$: MLl#1, OUTPUT$

CONNECT: Bl, IN4, INPUT1, OUTPUT, Cl$

: Al, INPUT2$

When elements with multiple inputs and a single output or a single

input and multiple outputs are connected, additional simplification of

the coding is possible as shown in the EXAMPLE below.

43

II A. DESCRIPTION MODULE

CONNECT (Cont'd.)

EXAMPLE

The three elements with names A, B and C are connected as shown

in the sketch below.

IN. 1 1

IN2 2 A 3B 1 C 2

IN3 3

The CONNECT statement can be coded as follows:

CONNECT: IN1, l#A#1, B, l#C#1, OUT1 $

: IN2, 2#A $: IN3, 3#A $

: C#2, OUT2 $: C#3, OUT3 $

The first CONNECT statement can also be written as follows:

CONNECT: IN1, l#A, B, C#1, OUT1 $

This shortened form of the CONNECT statement is possible since A

has a single output, B has a single input and output and C has a single

input.

44

I

II A. DESCRIPTION MODULE

DEVICE

FORMAT -

DEVICE: a FORTRAN name, number of element input terminals,

number of element output terminals, number of element

parameters$

COMMENTARY -

The DEVICE statement is used to create a new Element, coded in

FORTRAN, which is treated as though it were a Standard Element. This

is done by specifying the mnemonic, as identified by the FORTRAN name,

and referenced in a MARSYAS ELEMENTS statement, and the number of inputs,

outputs and parameters the new element is to have. A FORTRAN subroutine

must immediately follow the DEVICE statement and is used to add to the

MARSYAS library a temporary program capable of calculating the output of

the new element from its input values. A DIMENSION statement is required

in the subroutine even if there are no arrays needed within the subrou-

tine.

The subroutine name referenced in the FORTRAN SUBROUTINE statement

is the same FORTRAN name referenced in the DEVICE statement. This is the

element mnemonic assigned in the appropriate Description Module ELEMENTS

statement. A maximum of four arguments in parenthesis may follow the sub-

routine name. These arguments are arbitrary real FORTRAN array names for

the element inputs, outputs, parameters and time, in that order. If time

is not needed in the subprogram, it may be omitted from the argument list.

45

II A. DESCRIPTION MODULE

DEVICE (Cont'd.)

If time is used, however, its value must not be altered or otherwise

manipulated within the subprogram. Since the element inputs, outputs

and parameters are treated as arrays within the FORTRAN subprogram, a

DIMENSION statement dimensioning the arrays must appear within the sub-

routine. Real variable array names must be given to the dimensioned

arguments. The element name referenced in the MARSYAS ELEMENTS state-

ment is a MARSYAS name and, hence, is not restricted to six characters

as are FORTRAN names.

EXAMPLE (1)

The user decides to construct an element with MARSYAS name ALPHAONE

for use in Description Module model DELTA, The element, having a FORTRAN

mnemonic name ALPHA, has three inputs, two outputs and eight parameters.

The arbitrary real array names for the element inputs, outputs, parameters

and time are A, B, C, and D, respectively. The coding is as follows:

DEVICE: ALPHA, 3, 2, 8 $

SUBROUTINE ALPHA (A, B, C, D)
DIMENSION A(3), B(2), C(8)

o °RETURN4 END

MODEL: DELTA
ui . .

d ELEMENTS: ALPHA, ALPHAONE (1.1, -3.0, 0.0, 6.2,
i 8.0, 2.1, 3.4, -7.6) $

END$

46

II A. DESCRIPTION MODULE

DEVICE (Cont'd.)

EXAMPLE (2)

Shown below is the FORTRAN coding for a relay device which is

available in the Standard Elements library of MARSYAS. Following it is

the MARSYAS coding referencing this device.

ye
YB

YBREAKt

RA x
XBREAK

DEVICE: RELAY, 1, 1, 2$
SUBROUTINE RELAY (X, Y, Z)
DIMENSION X(1), Y(1), Z(2)
YBREAm = Z(1)

~ XBREAK = Z(2)
· ~ IF (ABS X(1) .LT. XBREAK) Y(1) = 0.0

0 0 IF (X(1) GE. XBREAK) Y(1) = YBREAK
IF (X(1) .LE. -XBREAK) Y(1) = -YBREAK
RETURN
END

MODEL: TIM$
INPUTS: . . . $
OUTPUTS: . . . $
ELEMENTS: RELAY, RELAY1 (YBREAK, XBREAK) $
CONNECT: . . . $
PARAMETERIZE: RELAYl, (YBREAK, 2.0, XBREAK, 1.0)$
END$
* . . .

Note that the FORTRAN name for the DEVICE and for the input, output
and parameter array names must be real variable names.

47

X

II A. DESCRIPTION MODULE

DEVICE (Cont'd.)

Should the need arise, the DEVICE statement can be constructed in

a general manner by substituting the letter N for any or all of the num-

ber of element inputs, outputs and parameters. Then the value(s) of N

is specified in the ELEMENTS statement as shown in EXAMPLE (3) below,

following by the appropriate element parameters.

EXAMPLE (3)

If in EXAMPLE (2) the number of element inputs, outputs and param-

eters are to be varied, the coding would appear as follows:

DEVICE: ALPHA, N, N, N $
SUBROUTINE ALPHA (A, B, C, D)
DIMENSION A(3), B(2), C(8)

RETURN
END

MODEL: PSY$
* . .o

ELEMENTS: ALPHA, ALPHA(2, 1, 4, 3.2, 1.1, 6.4, 9.3)$

. *.
END$

MODEL: BETA$

ELEMENTS: ALPHA, ALPHA15(1, 2, 3, 0.0, 2.4, 6.1)$

END$

48

II A. DESCRIPTION MODULE

DEVICE (Cont'd.)

Note in EXAMPLE (3) that the first three arguments in the element

parameter string identify the values of N to be inserted in the device

statement. The first value of N being the number of element input

terminals, the second value of N being the number of element output

terminals and the third value of N being the number of element parameters.

The remaining numbers in parenthesis are the actual values of the ele-

ment parameters.

It is permissible to place DEVICE statements, and associated sub-

routines anywhere within the MARSYAS program after the BEGIN statement

and before the Simulation Module provided they appear prior to their

first reference in an ELEMENTS statement. It is recommended, however,

that all DEVICE statements be placed at the very beginning of the MARSYAS

deck, after the BEGIN statement. This serves the purpose of isolating

the source FORTRAN code from the MARSYAS language statements.

49

II A. DESCRIPTION MODULE

DISCONNECT

FORMAT -

DISCONNECT: namel, name2, etc. $

COMMENTARY -

The DISCONNECT statement is used to cancel already defined signal

paths among the elements, submodels and input and output terminals. The

statement is written in exactly the same manner as for the CONNECT state-

ment. The DISCONNECT must appear after a CONNECT statement which estab-

lished the connection which DISCONNECT is now to break. The DISCONNECT

statement is not used with EQUATION.

EXAMPLE

If a CONNECT statement is given as

CONNECT: A, B, C, D $

a DISCONNECT statement might be

DISCONNECT: B, C $

The above two statements are now equivalent to the following statements:

CONNECT:

CONNECT:

A, B $

C, D $

50

/

II A. DESCRIPTION MODULE

ELEMENTS

FORMAT -

ELEMENTS: mnemonic, name (parameters, if required) $

COMMENTARY -

MARSYAS provides the user with a larger number of operational

devices called ELEMENTS, similar to those available on an analog computer,

but far more numerous and versatile. These elements include items such

as adders, integrators, multipliers, transfer functions, etc. A Table of

Standard MARSYAS ELEMENTS appears at the back of the Manual. The Table

lists the elements according to type or class, gives the element block

diagram symbol, the number of inputs and outputs, the element mnemonic,

the input-output relation and the appropriate parameters, if any. The

user is not restricted to the "standard" set. Non-standard elements may

be defined by the user through the use of the DEVICE statement. These

new elements are treated in exactly the same manner as the original set

furnished by the system. The ELEMENTS statement is not used when the

EQUATION statement is used.

EXAMPLE

ELEMENTS: AD, ADDERI, ADDER2, ADDER3 $

ELEMENTS: CM, CMNl(l.O), CM2(-3.6) $

51-

II A. DESCRIPTION MODULE

ELEMENTS (Cont'd.)

The constant multiplier (CM) elements above specify the parameter

constants 1.0 and -3.6. If the user desires, dummy variables may be sub-

stituted for these values and later specified in PARAMETERIZE statements.

An example of using parameter constants in an ELEMENTS statement

is as follows:

ELEMENTS: CM, CM1(A), CM2(B) $

* . . .: : : ::·

PARAMETERIZE: CM1 (A,

CM2 (B,

1 0)

-3.6)

$

$

See CONNECT for additional comments on elements.

52

II A. DESCRIPTION MODULE

END

FORMAT -

END $

COMMENTARY -

The END statement is used to close a DESCRIPTION MODULE. The

END statement must be the last statement in a DESCRIPTION MODULE.

EXAMPLE

END$

53

II A. DESCRIPTION MODULE

EQUATION

FORMAT -

EQUATION: Differential or algebraic equation $

COMMENTARY -

The EQUATION statement operator is designed to provide the user

with great flexibility in specifying his model. The model can be

described in terms of a system of differential and algebraic equations

with almost no restrictions on their structure. The one main restriction

is that a "solution scheme" of the set of equations must exist. This is

discussed in detail in Section IV C. of the Manual.

The ordinary differential equations which MARSYAS solves may be

linear or nonlinear and of any degree. Since the independent variable

is always time in the MARSYAS system, all differentiation is assumed to

be with respect to TIME. Direct differentiation of the variable name

TIME or of system INPUT or OUTPUT names is not permitted. The output vari-

bles may be differentiated by assigning to them alternate names. An

apostrophe is used to indicate differentiation with respect to time.

Thus d2x/dt2 would be represented as X".

There are no restrictions on the form of the mathematical expressions

contained within the equations, except that the expression itself must not

be differentiated. Expressions may employ any of the standard arithmetic

operations of addition (+), subtraction (or minus sign) (-), multiplica-

tion (*), division (/) and exponentiation (**). Balanced parentheses may

be used where needed. See EXAMPLE (1).

54

"£

II A. DESCRIPTION MODULE

EQUATION (Cont'd.)

Mathematical expressions may consist of MARSYAS names, mathematical

operators, numerical constants and MATH REFERENCES. The use of the

MATH REFERENCE adds an additional dimension to the use of the EQUATION

option in that the user is permitted to take shortcuts when constructing

equations, especially when the equations are used in conjunction with

block diagrams. See MATH REFERENCE, Section I G.

The block diagram and equation modes may be mixed when the system

main MODEL, described in block diagram form, contains SUBMODELS, some or

all of which contain equations. The structure of each submodel is, of

course, described as a separate MODEL.

When a MODEL contains an EQUATION statement, the statement operators

ELEMENTS, PARAMETERIZE, SUBMODEL, CONNECT, DISCONNECT and NAME are not

necessary and, therefore, not used. The MODEL statement must contain the

word EQUATION to alert the MARSYAS processor that equations are used in

the MODEL (see MODEL).

Many times, the EQUATION statement is used, in conjunction with the

INPUTS and OUTPUTS statements, to build a model of a system. When used

in this manner, the EQUATION operator presents a mathematical relation

which determines the value of the system outputs from the value of the

inputs and TIME. These relations may involve an arbitrary number of

intermediate variables.

An example of using MARSYAS in this manner is illustrated in Fig-

ure 4, Section I F. Note that each equation in Figure 4 is preceded by

55

II A. DESCRIPTION MODULE

EQUATION (Cont'd.)

the EQUATION statement (or its colon equivalent) and followed by the

dollar sign ($) terminator.

The number of INPUTS and OUTPUTS names for a MODEL is arbitrary.

There need not be any INPUTS, but there must be at least one output

terminal when using EQUATION. Thus, the INPUTS statement may be omitted

but the OUTPUTS statement must appear.

Initial conditions on the equations are coded in the Simulation

Module as noted in the INITIALIZE statement in Section II C. of this

Manual.

EXAMPLE (1)

Code the following homogeneous differential equation using the

EQUATION operator.

d2x + dx + cx 0.0

dt2 dt

EQUATION: 'X" + X' + C*X = 0.0$

56

II A. DESCRIPTION MODULE

EQATION Ct

EXAMPLE (2)

Code the following non-homogeneous differential equation using the

EQUATION operator and the MATH REFERENCE.

d2x dx
2' - + c)
2 dtdt

EQUATION: X" + X' + C*X

x = 5 sin 2 t

FSIN (5.0, 2.0, 0.0, TIME)$

An example of using the EQUATION operator with a MARSYAS transfer

function element converted to a MATH REFERENCE is shown in EXAMPLE (3)

of INITIALIZE in Section II C.

57

II A. DESCRIPTION MODULE

INPUTS

FORMAT -

INPUTS: namel, name2, etc. $

COMMENTARY -

The INPUTS statement is used to give identifying names to the

points in the model (input terminals) at which driving functions are

to be introduced. The INPUTS statement is optional if driving func-

tions are not needed in the model.

EXAMPLE -

INPUTS: IN, IN2, IN3$

or

INPUTS: IN $

IN2, IN3$

I

58.

II A. DESCRIPTION MODULE

MODEL

FORMAT

MODEL: name$ or MODEL : name, EQUATION $

COMMENTARY -

The MODEL statement is used to give an identifying name to the

models or submodel being described. Within a Description Module, all

model names must be unique. MODEL must be the first statement of a

Description Module and END the last. The name referenced is the user-

specified model name.

EXAMPLE

MODEL: SATURN5 SIMULATOR$

MODEL: X-LOOP GYRO$

MODEL: ALPHA$

If the EQUATION option is chosen, then the MODEL statement in-

cludes the word EQUATION as shown in the example below.

EXAMPLE

MODEL: DELTA, EQUATION$

59

II A. DESCRIPTION MODULE

NAME

FORMAT -

NAME: original name, new name $

COMMENTARY -

The NAIE statement is used to assign an additional MARSYAS

name to an element, parameter, system input terminal, or system output

terminal which is defined elsewhere through an ELEMENTS, PARAMETERIZE,

INPUTS, or OUTPUTS statement, respectively. In addition, it may be used

to assign a new name to a particular terminal of an element or its asso-

ciated parameters. The NAME statement is not used in connection with the

EQUATION statement.

EXAMPLE

NAME: BILL, WILLIAM$

This NAME statement assigns the new name WILLIAM to BILL. The

name BILL is not erased from the MARSYAS program and the names WILLIAM

and BILL may be freely interchanged.

The NAME statement can also be used to assign names to the

input(s) and output(s) of elements. See CONNECT for an example.

It is illegal to attempt to change a name previously defined by

a NAME statement with a new NAME statement.

60

II A. DESCRIPTION MODULE

OUTPUTS

FORM0AT -

OUTPUTS: namel, name2, etc. $

COMMENTARY -

The OUTPUTS statement is used to give identifying names to the

points in the model (output terminals) at which the system is to be

examined. There must be at least one output terminal in the main model.

EXAMPLE

OUTPUTS: OUT1, OUT2, OUT3$

or

OUTPUTS: OUT1$

OUT2, OUT3$

61.

II A. DESCRIPTION MODULE

PARAMETERIZE

FORMAT -

PARAMETERIZE: element name (parameter number or name, numerical
value)$

or

PARAMETERIZE: parameter name (numerical value)$

COMMENTARY -

The PARAMETERIZE statement is used to give numerical values to

specific MARSYAS parameters or to change parameter values previously

assigned. Parameters are identified through the names given in ELEMENTS

and NAME statements. The PARAMETERIZE statement is not used with

EQUATION.

EXAMPLE

Suppose the following is referenced in an ELEMENTS statement

ELEMENTS: TF, TFI(2, 2.0, 1.0, PHY, 1.8, 8.5, BETA)$

Then the PARAMETERIZE statement might read

PARAMETERIZE: TF1 (PHY, 6.0)$ TF1 (BETA, -1.OE-2)$

or

PARAMETERIZE: PHY (6.0)$ BETA (-loOE-2)$

62 -

II A. DESCRIPTION MODULE

PARANIETERIZE (Cont 'd.

The PARAMiETERIZE statement can be used to alter the value of a

parameter previously specified in an ELEMENTS statement. The user may

wish to use this method to effect a parameter change rather than recode

the original ELEMENTS statement, since it requires less work. If an ele-

ment contains several parameters, the PARAMETERIZE statement effecting a

change in parameters can be shortened by specifying the position of the

parameter within the parentheses, along with its revised value. See

CHANGE in Section II Co

EXAMPLE

For the ELEMENTS statement shown below, change the value of the

fifth parameter from 1.8 to 15.2.

ELEMENTS: TF, TF6(2, 1.3, 2.1, 7.4, 1.8, 3.4, 9.7) $

PARAIETERIZE: TF6(5, 15.2)$

The ELEMENTS then appears to the system as if it had been origi-

nally coded as

ELEMENTS: TF, TF6(2, 1.3, 2.1, 7.4, 15.2, 3.4, 9.7) $

63

II A. DESCRIPTION MODULE

SUBMODEL

FORAAT -

SUBMODEL: name ; INPUTS: a, b, c, d, etc; OUTPUTS: h, i, j, k, etc$

COMMENTARY -

A submodel is a model wholly contained within another model. The

SUBMODEL statement is needed to give identifying names to the submodel and

its input and output terminals. These terminal names will be used to

CONNECT the submodel to the main model. Submodels can be imbedded within

submodels. The structure of each submodel must be described in a Description

Module separate from the one in which it is imbedded.

EXAMPLE

INPUT1

INPUT2 -

MODEL: GAMMA$

OUTPUT1
OUTPUT2

OUTPUT3

64

IIA. DESCRIPTION MODULE

SUBMODEL (Cont'd.)

The model GAMMt contains one submodel and an integrator. It

could be coded as follows:

MODEL: GAMMA$

INPUTS: INPUT1, INPUT2$

OUTPUTS: OUTPUT1, OUTPUT2, OUTPUT3$

ELEMENTS: INTEGRATOR$

0.~ o SUBMODEL: PHY; INPUTS:A1; OUTPUTS: B1, B2$

·,4 O
4 CONNECT: INPUT1, Al$
o

: B1, OUTPUT1$

: B2, OUTPUT2$: INPUT2, INTEGRATOR, OUTPUT3$

I END$

.

MODEL:

INPUTS:

OUTPUTS:

ELEMENTS:

CONNECT:

END$

- -- I
PHY$ I

Al$

B1, B2$

$)configurations of PHY
!~Describes the configurations of PHY

- --

65

0o

o
-4

., 4

.A
U
V)
lW

I

O O

II A. DESCRIPTION MODULE

SUBMODEL (Cont'd.)

NOTE: In describing the submodel, the input and output terminal

names of the submodel need not be the same as those defined in the main

model. However, there must be a one-to-one correspondence between the

number and order of the terminals specified in both models' INPUTS and

OUTPUTS statements.

MARSYAS names used within a particular MODEL must be unique.

However, names which are used in a submodel can be repeated in the main

MODEL.

66

II B. MODIFICATION MODULE

B. Modification Module

The Modification Module is used to alter an already existing model

by adding or deleting elements, input or output terminals, and submodels

and/or by changing the interconnections among these items. A MARSYAS

program may contain several Modification Modules.

Figure 6 is a list of statements which can appear in the Modification

Module with brief comments as to their function. A detailed explanation

of a few of those statements, not previously discussed, is given in the

following pages. Explanations of the remaining statements appear in the

Description Module portion of this Manual. The order in which the state-

ments appear is immaterial except that MODIFY must be first and END last.

DISCONNECT, DELETE and SUBSTITUTE can be used to alter the Description

Module statements which defined the original connection (CONNECT) which is

now to be broken or the original element (ELEMENTS) which is now to be

deleted or substituted. DEVICE may appear at any point in the program pro-

vided it is used before the first appearance of the new element type in an

ELEMENTS statement. The INPUTS and OUTPUTS statements are used to define

additional input and output terminals, respectively. The SUBMODEL, ELEMENTS

and DEVICE statements are used to add additional submodels, elements and

non-standard elements, respectively. All additional terminals, if any, must

be connected within the Modification Module. The PARAMETERIZE and NAME

statements have the same functions as described within the Description

Module. When the EQUATION option is used in the Description Module, there

67

LI

II B. MODIFICATION MODULE

can be no Modification Module since no ELEMENTS, element names, CONNECTs

or parameters will exist there.

If the system contains several Description and Modification Modules,

the only requirement for ordering the Modules within a MARSYAS program

is that the Modification Module must follow the Description Module it

modifies. For example, a MARSYAS program might contain a group of three

Description Modules followed by a group of three Modification Modules.

68

II B. MODIFICATION MODULE

OPERATOR

CONNECT

DELETE

DEVICE

DISCONNECT

ELEMENTS

END

INPUTS

MODIFY

FUNCTION

Same functions as in Description Module.

Deletes an already specified element or
input or output terminal, and removes
all connections to or from that element
or terminal.

Defines a non-standard element.

Same functions as in Description Module.

Adds additional elements to the model.

Marks the end of a Modification Module.

Adds additional input terminals to the
model.

Marks the appearance of a modification
module and can give a new name to the
modified model.

Same functions as in Description Module.

Adds additional output terminals to the
model.

Assigns or changes numerical values of
parameters of elements present in
either a Description or Modification
model.

Adds additional submodels to the model.

Substitutes one element for a previously
defined element. The number of inputs
and outputs must be the same for both
elements.

Same functions as in Description Module.

NAME

OUTPUTS

PARAMETERIZE

SUBMODEL

SUBSTITUTE

*

STATEMENT OPERATORS USED IN THE MODIFICATION MODULE

69

FIGURE 6.

II B. MODIFICATION MODULE

DELETE

FORMAT -

DELETE: namel, name2, name3, etc,$

COMMENTARY -

The DELETE statement removes an element, input terminal or

output terminal from the model being modified. All connections asso-

ciated with the deleted items are broken. The user must reconnect

(using CONNECT statements), the elements and terminals which are

affected by the DELETE statement.

EXAMPLE

If the unmodified model ELEMENTS statement is

ELEMENTS: AD, AD1, AD2, AD3$

and a Modification Module DELETE statement is

DELETE: AD2$

then the effect is that the original model would look as if it had

been coded as

ELEMENTS: AD, AD1, AD3$

70

I

II B. MODIFICATION MODULE

DELETE (Cont'd.)

The user must reconnect the deleted connections associated with

the deleted element, AD2.

71

II B. MODIFICATION MODULE

END

FORMAT -

END$

COMMENTARY -

The END statement is used to close a Modification Module. The

END statement must be the last one in a Modification Module.

EXAMPLE

END$

72

II B. MODIFICATION MODULE

MODIFY

FORMAT -

MODIFY: model name, new model name (optional)$

COMMENTARY -

The MODIFY statement is used to identify the model which is to be

modified and optionally to give the modified model a new name. If a

new name is not given, the modified model has the same name as the ori-

ginal model. MODIFY must be the first statement of the Modification

Module.

EXAMPLE

MODIFY: ALPHAS

MODIFY: ALPHA, BETA$

The first statement identifies the model which is to be modified.

The second statement may be used in place of the first if the user de-

sires to retain the original model, ALPHA, and create a new model BETA

which will be a modified version of ALPHA.

73

II B. MODIFICATION MODULE

SUBSTITUTE

FOREAT -

SUBSTITUTE: original element namen, replacement element name$

COMMENTARY -

The SUBSTITUTE statement is used to effect the complete replace-

ment of one element by another element. The elements do not have to be

of the same type as long as each element has the same number of input

and output terminals. For example, a power function could be substituted

for an integrator since both have one input and one output. All connec-

tions to and from the original element are replaced by the connections

to and from the substitute element.

EXAMPLE

If the original model contained the following statements,

ELEMENTS: CM, CM1$

: AD, ADl, AD2$

CONNECT : AD1, CM1, AD2$

and the Modification Module contained the statements,

SUBSTITUTE:

ELEMENTS:

CM1, INL$

IN, IN1 $

74

II B. MODIFICATION MODULE

SUBSTITUTE (Cont'd.)

then the effect is that the original model would look as if it had been

coded as

ELEMENTS:

CONNECT:

Note: It is up to

stitution is physically

AD, AD1, AD2$: IN, INI$

AD1, INI, AD2$

the user to determine whether a particular sub-

meaningful.

75

r

II Co SIMULATION MODULE

C. Simulation Module

The Simulation Module completes the description of the system whose

structure is defined in a Description Module(s). A MARSYAS program can

contain only one Simulation Module. In this Module, the user specifies

the INPUT excitation function(s), the numerical integration scheme to be

used in the problem solution and any required initial conditions. The

conditions for stopping the simulation are also specified in the Simula-

tion Module.

A sequential series of simulations can be run without resubmitting

the MARSYAS deck by using CHANGE statements. These permit the user to

alter one or more of the following statements without altering the origi-

nal coding: EXCITE, INITIALIZE, STOP IF, TERMINATE IF and PARAMETERSo

Excitation functions are impressed upon the model input terminals

using EXCITE statements. A Table of Standard Excitation functions is

part of the MARSYAS system and is shown at the back of this Manual.

Additional excitation functions may be defined by the user through FUNC-

TION statements,

Initial conditions (other than zero) on integrators or transfer

functions are specified with the INITIALIZE statement,

There are currently five methods of numerical integration available

in the MARSYAS system, Euler's lSt-order, Butcher's 5th-order, Sarafyan

5th-order variable-step, 4th-order Runga-Kutta and Adams-Bashforth

predictor-corrector. These integration methods are discussed in Section

IV B. The MARSYAS system automatically selects the Sarafyan variable-

step method unless instructed otherwise by an INTEGRATE statement. If

76

II C. SIJIUIATION MODULE

the user chooses the Adams-Bashforth method, the MARSYAS system auto-

matically selects a relative error of 0.002 unless otherwise specified.

In addition, Runga-Kutta and Butcher's methods will be run using a step

size of 0o01 unless otherwise specified.

Conditions for temporarily or permanently halting the simulation

are given by the STOP IF and TERMINATE IF statements, respectively.

STOP IF is used to halt each simulation when using CHANGE statements.

Constant gain elements (Constant Multipliers) can be changed into

time-varying multipliers through the use of the VARY GAIN statement.

If the user has described his system in block-diagram form in the

Description Module, linear and/or nonlinear "loops" may be present. The

absence of an integrator or transfer function in a closed path produces

a loop. A loop is nonlinear if it contains at least one nonlinear ele-

ment (such as a power function). Otherwise it is linear. In the MARSYAS

system, loops are automatically solved using either a Newton-Raphson or

a successive approximation technique and the elements within these loops

are automatically listed for the user by the MARSYAS processor. The

ESTIMATE statement can be used to assign initial values to the outputs

of nonlinear elements within a nonlinear loop(s) should the user desire

to do so, otherwise a value of zero is assumed.

A summary of the statements which appear in the Simulation Module

is shown in Figure 7 along with brief comments as to their function.

Details of these statement operators are given in the following pages.

77

II C. SIMUTLATION MODULE

The order in which the statements appear in the NARSYAS deck is imma-

terial except that SIMULATE must be the first statement of the Simula-

tion Module and END the last. FUNCTION does not have to appear within

the Simulation Module, but must appear before it is referenced in an

EXCITE statement. It is recommended that all FUNCTION statements be

placed at the very beginning of the MARSYAS deck, after any DEVICE

statements or just following the BEGIN statement.

78

II C.

OPERATOR

CHANGE

END

ESTIMATE

EXCITE

FUNCTION

INITIALIZE

INTEGRATE

PARAMETERS

SIMULATE

STOP IF
TERMINATE IF

VARY GAIN

SIMULATION MODULE

FUNCTION

Creates additional simulation runs with
changes in the model.

Marks the end of the Simulation Module.

Specifies initial values for the outputs
of nonlinear elements within a nonlinear
loop.

Specifies the excitation functions to
be applied to the input terminals.

Defines a non-standard excitation func-
tion.

Specifies initial conditions for inte-
grators or transfer function elements.

Specifies the integration method to be
used.

Specifies new parameters for a Descrip-
tion Module element.

Marks the appearance of the Simulation
Module.

Specifies the condition or conditions
for stopping a simulation either tempo-
rarily (STOP) or permanently (TERMINATE).

Defines time varying coefficients.

Provides a comment for the user.

FIGURE 7. STATEMENT OPERATORS USED IN THE SIMULATION MODULE

79

He

II C. SIMULATION MODULE

CHANGE

FORMAT -

CHANGE: name of change; Statement operator : Statement format $

Note: For each change statement, a separate simulation is
performed.

COMMENTARY -

The CHANGE statement is used when repetitive simulations are de-

sired. For example, the user may wish to observe the behavior of his

model when certain parameters, excitation(s), initial conditions or

stopping conditions have been changed. A series of simulations can be

set up in one run, thus saving valuable user and computer time. When

using CHANGE, the user specifies an identifying name for the new simula-

tion, the statement operator being changed and the statement format.

The statement operators used with the CHtANGE statement are PARAMETERS,

EXCITE, INITIALIZE, STOP IF and TERMINATE IF.

When changing Description Module ELEMENT parameters, the user must

specify the name of the MODEL in which the element occurs, the element

name, the position number of the parameter in the parameter string and

changed parameter values.

80

II C. SIMULATION MODULE

CHAkGE (ContLd)

EXAMPLE

The following ELEMENTS statement appears in the Description

Module model PSY

ELEMENTS: TF, TF6(2, 1.3, 2.1, 7.4, 1o8, 3.4, 9.7)$

and the user desires to change the fifth value in the parameter string

to 15.2. The CHANGE statement would be coded as follows:

CHANGE: NEW TF6; PARAMETERS: PSY, TF6(5, 15.2) $

This causes the original ELEMENTS statement to be processed as

if it had originally been coded as

ELEMENTS: TF, TF6(2, 1.3, 2.1, 7.4, 15.2, 3.4, 9.7)$

If one of the parameters in an ELEMENTS statement is a MARSYAS

name rather than a real number, the same technique as described above

can be used to change its value. Consider the same ELEMENTS statement

as shown in the above example except that the fifth element which we

want to change has the name BILL as shown below:

ELEMENTS: TF, TF6(2, 1.3, 2.1, 7.4, BILL, 1.8, 3.4, 9.7)$

81

II Co SIMULATION MODULE

CHANGE (Cont'd.)

Changing the value of BILL to 15o2 can be accomplished in the following

manner:

CHANGE: NEW TF6; PARAMETERS: PSY, TF6(5, 15.2)$

Since the name BILL is unique within the MODEL where it is used,

the CHANGE statement can be shortened somewhat to take advantage of this

fact by referencing the parameter name rather than the element name. The

previous CHANGE statement could then be written as follows:

CHANGE: NEW TF6; PARAMETERS: PSY, BILL(15.2)$

If several parameters of one element are to be altered using one

CHANGE statement, the position numbers and new parameter values are

listed in pairs, in any sequence, as shown below.

EXAMPLE

The following time varying coefficient element appears in the

Description Module model TIM

ELEMENTS: TV, TV1(3, 0.0, 0.0, 4.2, 1.6, 5.4, -3.2)$

and the user desires to change the last four parameters to the follow-

ing values: 5.1, 1.93, 6.2, 1.1o The MARSYAS coding is as follows:

CHANGE: RUN3; PARAMETERS: TIM, TVI(4, 5.1, 5, 1.93, 6, 5°4, 7, 1.1)$

82

II C. SIMULATION MODULE

CHANGE (Cont'd.)

An alternate method of coding the previous statement is as follows:

CHANGE: RUN3; PARAMETERS: TIM, TVi(4,5.1)(5,1.93)(6,5.4)(7,1.1)$

If an element contains only one parameter, the position number of

the parameter is one. The coding for changing the value of a constant

multiplier is shown in the example below.

EXAMPLE

If the constant multiplier element with name CM1 and parameter

value 3.0 exists in the Description Module model ALPHA and the user

desires to change the multiplier parameter value to 6.4, then the Simu-

lation Module CHANGE statement with new simulation name NEW CM2 would

read

CHANGE: NEW CM2; PARAMETERS: ALPHA, CM2 (1, 6.4)$

If the user desires to change the Simulation Module EXCITE,

INITIALIZE, STOP IF and TERMINATE IF statements, the form of the state-

ment(s) is exactly as described elsewhere in this section of the Manual

except that each statement is preceded by the word CHANGE and the title

of the change.

83

II C. SIMULATION MODULE

CHANGE (Cont'd.)

EXAMPLE

CHANGE: name of change; EXCITE : input terminal name, new

excitation function mnemonic$

CHANGE: name of change; INITIALIZE : model name, element name

(new initial conditions)$

CHANGE: name of change; STOP IF : new logical expression$

CHANGE: name of change; TERMINATE IF : new logical expression$

Except for STOP IF and TERMINATE IF, CHANGE statement altera-

tions are permanent unless changed again in subsequent simulations.

STOP IF statement changes are temporary and are valid only for the simu-

lation specified by the given CHANGE statement.

If there are "n" CHANGE statements in the Simulation Module,

there will be "n+l" simulations executed by the MARSYAS processor. The

additional simulation being that of the system as originally configured,

as if no CHANGE statements were present. If the user desires to omit the

original simulation and have the MARSYAS processor proceed to the simu-

lation as specified by the first CHANGE statement, he must insert the

following statement anywhere in the Simulation Module.

CHANGE: (DELETE) $

84

II C. SIMULATION MODULE

CHANGE (Cont'd.)

The simulations will then proceed, one by one, until all of the

CHANGE statements have been executed or until a TERMINATE IF statement

appears.

When a TERMINATE IF statement is executed, the MARSYAS program is

halted and no further CHANGE statements are executed. This is not the case

with the STOP IF statement. For example, after changing one or more ele-

ment parameters, initial conditions or excitation functions, the user may

decide to examine the system outputs after a short period of simulation

time, then proceed to the next CHANGE statement. The STOP IF statement is

used for this purpose.

EXAMPLE

Let us assume that the user decides to change one of the system

EXCITE functions toa ramp and also to change the simulation time. The

CHANGE statement could be coded as follows:

CHANGE: RUN ONE ; EXCITE : INPUT6, FRAMP (-2.0); STOP IF : TIME .GT. 10.0$

t Note - Semicolon

When there is more than one change specified in a particular

CHANGE statement, each is separated by a semicolon as shown in the example

above.

85

II C. SIMULATION MODULE

END

FORMAT -

END$

COMMENTARY -

The END statement is used to close the Simulation Module. The END

statement must be the last one in the Simulation Module.

EXAMPLE

END$

86

II C. SIMULATION MODULE

ESTIMATE

FORMAT -

ESTIMATE: model name, element name (output(s) estimate)$

COMMENTARY -

The ESTIMATE statement is used to assign initial values to the

outputs of non-linear elements which are part of the non-linear loop.

When using the ESTIMATE statement, the user specifies the initial esti-

mate of the output of a non-linear element which is part of a non-linear

loop. The use of ESTIMATE is similar to that of INITIALIZE which speci-

fies the initial conditions on integrators or transfer functions. The

use of ESTIMATE is optional and is intended for use as an aid, if needed,

in solving imbedded non-linear loops.

EXAMPLE

If a non-linear loop in model ALPHA contains a power function

element whose name is PF1, and whose user specified estimate at time zero

is 1.0, then the ESTIMATE statement would be

ESTIMATE: ALPHA, PF1 (1.0)$

87

II C. SIMULATION MODULE

ESTIMATE (Cont'd.)

Should a non-linear element contain two outputs, such as an out-

put relay (with name R01), then the ESTIMATE statement would be

ESTIMATE: ALPHA, R01 (1.5, 3.2)$

88

II Co SIMULATION MODULE

EXCITE

FORMAT -

EXCITE: system input name, excitation function mnemonic (parameters)$

COMMENTARY -

The EXCITE statement is used to specify an excitation function at

each input terminal. The user must specify the excitation mnemonic and

the parameters associated with the given excitation. A Table of Standard

MARSYAS EXCITE statements appears at the back of this Manual. The Table

lists the excitation function mnemonics and parameters, the type of ex-

citation, the mathematical description of the excitation function, and

a graph of the function versus time. The user is not restricted to the

"standard" set. Non-standard excitations may be defined by the user

through the use of the FUNCTION statement (see FUNCTION). When coding,

non-standard excitations are treated in exactly the same manner as the

standard MARSYAS set.

EXAMPLE

EXCITE: INPUT1, FSIN (5.0, 2.0, 0.0)$

This statement causes the MARSYAS processor to excite terminal

INPUTI with the function 5 sin 2t.

89 -

II C. SIMULATION MODULE

EXCITE (Cont'd.)

The same excitation function can be used to excite several dif-

ferent inputs as shown in the example below.

EXAMPLE

The system contains inputs INI, IN2, IN3 which are to be excited

with a step function of magnitude 3.2. The coding required to effect this

is as follows:

EXCITE: IN1, IN2, IN3, FSTEP(3.2)$

or

IN1, FSTEP(3.2)$

IN3, FSTEP(3.2)$

: IN2, FSTEP(3.2)$

90

EXCITE:

II CO SIMULATION MODULE

FUNCTION

FORMAT -

FUNCTION: a FORTRAN name, number of parameters$

COMMENTARY -

The FUNCTION statement is used by the programmer to create a new

excitation function, coded in FORTRAN, which is treated as though it

were a MARSYAS Standard Excitation Function. This is done by specifying

the new mnemonic as identified by the FORTRAN name, and the number of

mathematical parameters required to compute the excitation function. A

FORTRAN FUNCTION subprogram must immediately follow the MARSYAS FUNCTION

statement as formatted above. The user-created FORTRAN FUNCTION subpro-

gram then computes the output of the new excitation function from the

parameter values specified in the EXCITE statement. (See EXCITE.)

The subprogram name referenced in the FORTRAN FUNCTION statement

is the same FORTRAN name referenced in the MARSYAS FUNCTION statement.

This is the excitation function mnemonic assigned in the Simulation Module

EXCITE statement. The arguments in parenthesis which follow the FORTRAN

FUNCTION name are arbitrary real FORTRAN names for the parameters re-

quired to compute the excitation function in the subprogram. The last argu-

ment in the parameter list must be a symbol for time. The value of time

must not be altered or otherwise manipulated within the subprogram. The

91

IT C. SIMULATION MODULE

FUNCTION (Cont'd.)

excitation name referenced in the MARSYAS EXCITE statement is a MARSYAS

name and, hence, is not restricted to six characters as are FORTRAN

names.

It is permissible to place the FUNCTION statement(s) and associated

subroutine(s) anywhere within the MARSYAS program after the BEGIN state-

ment and before the Post Processing Module provided they appear prior to

being referenced in EXCITE statements. It is recommended, however, that

all FUNCTION statements be placed at the beginning of the deck, after or

shortly following, the BEGIN statement to isolate the source FORTRAN

code from the MARSYAS language statements.

EXAMPLE

Shown below is the FORTRAN coding for the truncated ramp excitation

function shown. Following it is the MARSYAS coding referencing this

FUNCTION.

X

A

0 B

- TIME

92

II Co SIMULATION MODULE

FUNCTION (Cont' d.)

* . .

FUNCTION: RAMP, 3 $

FUNCTION RAMP (A, B, T)

IF ((T .GE. 0.0) oAND. (T .LT. B)) X = A/B * T

w C IF (T .GE. B) X = 0.0
H *H

° 0 RAMP = X

RETURN

E ND

. . . .

SIMULATE: EPOCH$
*

EXCITE: INPUT6, RAMP (2.0, 2.0)$

*

END$

93
.

11 C. SIMILATION MODULE

INITIALIZE

FORMAT -

INITIALIZE: model name, element name (initial conditions)$

CONMMENTARY -

The INITIALIZE statement is used to assign initial conditions to

the integrators and transfer functions defined in the MARSYAS program.

When using the block-diagram approach, the user must specify the name

of the model in which the integrator or transfer function appears along

with its element name and initial conditions. If specifying the initial

conditions of an nth-order transfer function, n-initial conditions must

be specified in the ascending order of the derivatives as shown in

EXAMPLE (1). If the INITIALIZE statement is omitted, all initial condi-

tions are defaulted to zero, automatically.

When using the EQUATION mode of solution as defined in the Descrip-

tion Module, the initial conditions are specified by stating the model

name followed by each derivative and its initial condition. If one of

the derivatives is omitted, then its initial condition is automatically

defaulted to zero. See EXAMPLE (2).

When using a model which has a MATH REFERENCE transfer function,

the initial condition on the transfer function is specified as shown in

EXAMPLE (3).

94,

II C. SIMULATION MODULE

INITIALIZE (Cont'd.)

EXAMPLE (1)

If model ALPHA contains an integrator with name IN],. initial condition

of 3.6, and second order transfer function with name TF6, where TF6 is

y(s) s + 1 with y(O) = 1.2 and y' (0) = 4.4
u(s) s2 + 2s + 1

then the initial conditions on each are specified as follows:

INITIALIZE: ALPHA, IN1 (3.6)$

: ALPHA, TF6 (1.2, 4.4)$

EXAMPLE (2)

Suppose in model BETA, which uses EQUATION, the variable X as well

as the derivatives XM"', X"' , X", and X' appear. Then the non-zero ini-

tial conditions would be expressed as follows:

INITIALIZE: BETA, X"' (1.6), X" (2.2)$

The initial condition on X' would automatically be set to zero

since it has been omitted from the INITIALIZE statement.

95

II C. SIMULATION MODULE

INITIALIZE (Cont'd.)

EXAMPLE (3)

Suppose we wish to code the following expression in EQUATION form

in a Description Module model whose name is PHY.

Y(s) 1
X(s) s + 1

Using the MARSYAS Transfer Function element as a MATH REFERENCE,

the above could be written in EQUATION form as follows:

MODEL: PHY, EQUATION$

Y = TF (1, O, 1, 1, 1, X)$

END$

Then, in the Simulation Module, the INITIALIZE statement would read

INITIALIZE: PHY, Y (1.6)$

96 -

GC

II C. SDIIIATION MODULE

INTEGRATE

FORMAT -

INTEGRATE: mnemonic, code word, real number $

COMMENTARY -

The INTEGRATE statement (optional) is used to specify the integra-

tion algorithm to be used in the problem solution. Five methods of inte-

gration are presently available in the MARSYAS system, Euler's (lSt-order),

Butcher's (5th-order), Sarafyan (5th-order) variable-step, Runga-Kutta

(4th-order) and Adams-Bashforth predictor-corrector. Other numerical

integration methods soon will be added to the NARSYAS language allowing

the user greater flexibility in solving his problem. Only one INTEGRATE

statement can appear in a MARSYAS deck. When choosing the method of inte-

gration desired, the user specifies its mnemonic, the code word TDIESTEP,

and integration step size. The mnemonics for each of the integration

methods currently available are as follows: Euler's (EU), Butcher's (BU),

Sarafyan (SA), Runga-Kutta (RK), Adams-Bashforth (AB). The timestep may

be specified only for Euler, Butcher and Runga-Kutta methods. If the

timestep is omitted, the simulations will be performed with an integra-

tion step size of 0.01.

If the user omits the INTEGRATE statement, the simulation will be

run using the Sarafyan method. If the user chooses the Adams-Bashforth

method, the MARSYAS system automatically selects a relative error of 0.002.

97

II Co SIMULATION MODULE

INTEGRATE (Continued)

An absolute error or other relative error may be selected if the code

word ABSERR or RELERR, respectively, is used in an INTEGRATE statement,

followed by the user specified error.

If the simulation problem contains a Sample and Hold element(s),

Butcher's method or the Runga-Kutta method of integration should be used,

with the TIESTEP smaller than the smallest Sample and Hold interval.

EXAMPLES

a) INTEGRATE: RK, TIMESTEP, 0.01$

b) INTEGRATE: AB, RELERR, 0.05$

c) INTEGRATE: AB, ABSERR, 0.001$

d) INTEGRATE: BU, TIMESTEP, 0.01$

e) INTEGRATE: EU, TIESTEP, 0.01$

Euler's method is implemented automatically whenever the ItARSYAS

processor detects the presence of a discontinuity. Thus, if a disconti-

nuity occurs at time, tl, the integration method will change to the

Euler method at time tl-E and back to the method of integration used before

the discontinuity was encountered, at time tl+E. The reason for the

Euler-interrupt is that the lower order method gives better results at

discontinuities than the higher order methods. See Section IV B.

To disable the Euler-interrupt at discontinuities so that the chosen

integration scheme continues without interruption, simply insert the

98

II Co SIMULATION MODULE

INTEGRATE (Continued)

word XEULER after the timestep or error value in the INTEGRATE statement

as follows:

INTEGRATE: RK, TIMESTEP, 0.001, XEULER$

99

II C. SIMULATION MODULE

PARAMETERS

FORMAT -

PARAMETERS: model name, element name (parameter number, numerical
value)$

or

PARAMETERS: model name, parameter name (numerical value)$

COMMENTARY -

The PARAMETERS statement is used to assign numerical values to

Description Module element parameters in much the same way as the

Description Module PARAMETERIZE statement (Section II A.). The only

difference between the two operators is that the model name must be

specified in the PARAMETERS statement, whereas it is not required in the

PARAMETERIZE statement.

The user might choose to use this operator when altering parameters

in several different Description Modules thus eliminating the need for

changing his original coding.

EXAMPLE

PARAMETERS: PSY, CM1 (1, 2.2)$

See PARAMETERIZE and CHANGE for additional comments and examples.

100

a

II C. SIbULATION MODULE

S IMULATE

FORMAT -

SIMULATE: System model name$

COMMENTARY -

The SIMULATE statement is used to identify the system being

simulated. The system model name is the main model name specified in

the Description Module. Since there is only one system model, any

other models appearing in the Description Module describe the structure of

submodels appearing in the main system model.

SIMULATE must be the first and END the last statement of this

module.

EXAMPLE

SIMULATE: SPACE SHUTTLE ENGINE$

101

*1

II C. SIMULATION MODULE

STOP IF

FORMAT -

STOP IF: logical expression $

COMMENTARY -

The STOP IF statement specifies the condition(s) for temporarily

halting a simulation. When more than one simulation is to be executed

(via CHANGE statements), a halt caused by STOP IF allows the execution

of the next simulation to proceed. This is contrasted with a halt

caused by TERMINATE IF which permanently stops the simulation and pre-

vents the execution of any additional simulations. There is no differ-

ence between STOP IF and TERMINATE IF if no CHANGE statements are present.

The construction of the logical expression part of the STOP IF statement

is described under TERMINATE IF. There may be as many STOP IF statements

as the user may require to control the simulation.

EXAMPLE

STOP IF: TIME .GT. 20.0$

STOP IF: (OUTPUT6 .LE. OUTPUT3)$

STOP IF: (INPUT1 .AND. INPUT2) .GE. 60.0$

102

II C, SIMULATION MODULE

TERMINATE IF

FORMAT -

TERMINATE IF: logical expression $

COMMENTARY -

The TERMINATE IF statement specifies the condition(s) for perma-

nently halting a simulation. The halting conditions are expressed

using standard FORTRAN logical expressions. The logical operators AND,

OR, NOT and relational operators EQ, NE, GT, GE, LE and LT are used to

form logical expressions involving TIME, and/or model INPUT or OUTPUT

names. A halt caused by TERMINATE IF halts the simulation being exe-

cuted and no additional simulations will be processed even though

CHANGE statements may be present. (See STOP IF.) There may be as many

TERMINATE IF statements as the user may require to control the simula-

tions.

EXAMPLE

TERMINATE IF: TIME .GT. 5.0$

TERMINATE IF: (OUTPUT1 .OR. OUTPUT2) .GT. 3.2$

TERMINATE IF: (INPUT1 .AND. INPUT2) .EQ. 60.0$

Testing on equality as shown above should be avoided because the

equality may never be exactly satisfied.

103

II C. SIMUIATION MODULE

VARY GAIN

FORMAT

VARY GAIN model name, constant multiplier (algebraic expression) $
VARY GAIN: model name, element name or numerical list

C OMIENTARY -

The VARY GAIN statement is used to change Constant Multiplier elements

into Time Varying multipliers. This feature permits the user to solve

different equations with time varying coefficients or solve models which

contain time varying multipliers. Recall that Constant Multiplier (CM)

elements are assigned names in a DESCRIPTION Module using an ELEMENTS state-

ment. These CM element names along with the model name of the DESCRIPTION

Module in which they appear are used in the VARY GAIN statement above.

EXAMPLE

Suppose in model BETA, with Constant Multiplier element names

MULTI(36.3), MULT2(O.05) and MULT3(-3.4), the user desires to change

MULT2 to 3t + 5.2 cos t. Then the VARY GAIN statement would be expressed

as follows:

VARY GAIN: BETA, MULT2('3.0 * TIME ** 2 + 5.2 * COS(TIME)')$

Note the quote marks ' ' which must enclose, the entire expression.

104

II C. SIMULATION MODULE

VARY GAIN (Continued)

Should the time-varying nature of the function be expressed as a

linear piecewise continuous curve, then the coordinates of the curve at

the discontinuities are sufficient to define the function as shown below

y = f(t) (t2t Y2 (Y4

(t Iy 1
')(flays(t 3 ,Y3)

TIME

which is represented by the numerical list

(n, tlYl, t2,Y2, ... tnyn)

where the first number in the list, n, is an integer specifying the num-

ber points defining the function (•100 points), and the numbers following

n are the coordinates of the points. Note that the numerical list is

not enclosed by quote marks.

EXAMPLE

In the previous example, let MULT2 be a piecewise continuous func-

tion similar to the plot above. Then the VARY GAIN statement would read

VARY GAIN: BETA, MULT2 (4, 0.0, 1.0, 1.2, 2.2, 2.8, 1.0, 4.3, 2.4)$

105

II D. POST PROCESSING MODULE

D. Post Processing Module

The function of the Post Processing Module, which always follows

the Simulation Module, is to specify the output format for the MARSYAS

processor. In addition, the Post Processing Module contains a Fast

Fourier Transform (FFT) processor which is explained later in this sec-

tion. A MARSYAS program can contain only one Post Processing Module.

The following is a brief description of the terminology which the

user will encounter in reading this section of the Manual.

The PRINT statement is used to specify which output variables are

to be printed while the SAMPLE statement indicates the print interval.

If all or part of the output is to be plotted, a PLOT statement is re-

quired. Should the frequency response at any output terminal be desired,

the FOURIER statement is used.

A summary list of the statement operators used in this section

appears in Figure 8 along with brief comments as to their function. The

order in which the statements appear within the Post Processing Module

is immaterial except that END must be the last statement.

A more detailed description of these operators as well as examples

as to their use appears in alphabetical order on the following pages.

106

II D. POST PROCESSING MODULE

FUNCTION

Marks the end of the Post Processing
Module.

Calculates the frequency response
of the system inputs or outputs
specified.

Defines the variables to be plotted
and the way they are to be plotted.

Specifies the variables to be printed.

Defines the sampling rate at which the
variables are printed.

Provides comment for the user.

STATEMENT OPERATORS USED IN THE POST PROCESSING MODULE

107

OPERATOR

END

FOURIER

PLOT

PRINT

SAMPLE

FIGURE 8.

*

II D. POST-PROCESSING MODULE

END

FORMAT -

END$

COMMENTARY -

This should be the last statement in the post-processing module.

108

. ,

II D. POST-PROCESSING MODULE

FOURIER

FORMAT -

FOURIER: name 1 (period length), name 2 (period length), etc. $

COMMENTARY -

The FOURIER statement provides the user with a frequency response

of the system inputs or outputs specified. The frequency response con-

sists of a Fourier Transform magnitude and phase spectrum and power

spectral density (PSD). The waveform period length must be specified

by the user and is indicated by a real number in parenthesis after the

input or output terminal name. A maximum of 2048 samples are available

for use in obtaining the frequency response of each terminal. Since

Runga-Kutta is the only integration scheme permitted when using FOURIER,

the user must coordinate his integration step size with the period length

to take advantage of the maximum number of sample points which the MARSYAS

processor is capable of handling. In addition to tabulation data output,

the user is provided with linear plots of PSD, magnitude and phase angle

versus frequency.

EXAMPLE

The user has decided to obtain the frequency spectrum of his sys-

tem at output LAMBDA. After having examined the time response at LAMBDA,

he decides that a period length of 16.0 seconds is required to define

his waveform. In order to utilize all 2048 permissible sample points,

109

*1

II' D. POST-PROCESSING MODULE

FOURIER (Cont'd.)

the user computes his Runga-IKutta step size to be

seconds pont
16.0 pseconds 2048 points 0.0078125 seconds/sample point.period period

This is the integration TIMESTEP which must be used as part of the

INTEGRATE statement in the Simulation Moduleo The FOURIER statement is

coded as follows:

FOURIER: LAMBDA (16.0)$

It is not necessary for the user to use all 2048 sample points in

order to obtain the frequency response. However, the use of the maxi-

mum number of points (2048) will always give more accurate results than

when using fewer points.

110'

II D. POST-PROCESSING MODULE

PLOT

FORMAT -

PLOT: grid-type (TIME1,TIME2,CODE), N(X1,Yl, X2,Y2, X3,Y3)$
mnemonic

COMMENTARY -

The PLOT statement is used to obtain automatically scaled plots

of the INPUTS and/or OUTPUTS of the system being simulated. The grid

type is specified by the mnemonics LINEAR, SEMILG, LOGLOG and LOGSEMo

Figure 9 summarizes the functions of the grid type mnemonics. TIME1

and TIME2 are the plot start and stop reference times. CODE is an inte-

ger, 1 or 2, indicating the nature of the independent variable(s) being

plotted. If CODE is 1, the independent variable being plotted is TIME;

and, if CODE is 2, it is not TIME. Code equal to one may be implied,

if desired, by closing the parenthesis after TIME2.

The integer N is a positive or negative number which designates

the number of frames of graph paper to be used when plotting the data.

N can be greater than one only when TIME is the independent variable

being plotted. If N is one, both N and the parenthesis may be omitted.

A frame is a unit of output paper approximately 7.5 inches square.

Two frames would be 7.5 inches x 15 inches; three frames would be

7.5 inches x 22.5 inches; etc. If the user decides to spread out the

TIME axis, he can do so by specifying as many frames, N, as needed to

achieve the result.

111

j

II De POST-PROCESSING MODULE

PLOT (Cont'd.)

GRID TYPE
MNEMONIC

LINEAR

SEMILG

LOGLOG

LOGSEM

ABSCISSA

linear

linear

logarithmic

logarithmic

ORDINATE

linear

logarithmic

logarithmic

linear

FIGURE 9. AXIS DESIGNATION FOR VARIOUS PLOT MNEMONICS

.112

II Do POST-PROCESSING MODULE

PLOT (Conttdo)

Normally, there appears one set of grid lines per frame of graph

paper. There may be times, however, when the user decides to place more

than one grid, one above the other, on a frame of graph paper. A maxi-

mum of three grids can be placed on one frame of graph paper. A nega-

tive sign preceding the integer N denotes that multiple grids are de-

sired. The number of coordinate names in parenthesis following N denotes

the number of grids needed. Since a maximum of three grids are permitted

on a frame of graph paper, up to three sets of coordinate names are per-

mitted inside the parenthesis. A maximum of three plots can be placed

on one grid if multiple plots are desired. A positive sign or lack of

sign for the integer N denotes that multiple plots are required with the

number of sets of coordinate names in parentheses indicating the number

of plots needed.

XI and YI are the user-given MARSYAS names of the system INPUTS

or OUTPUTS which are to be plotted. XI is the independent variable (the

abscissa), TIME or other system OUTPUT or INPUT name, and YI the depend-

ent variable (the ordinate). A maximum of three sets of variable names

may appear within the parenthesis of a given PLOT statement if paren-

theses are used. See EXAMPLE (1). As many PLOT statements as required

may be used within the Simulation Module so long as the total number of

graphs processed does not exceed one hundred.

113

II D. POST-PROCESSING MODULE

PLOT (Cont'd.)

If a simple plot of one variable against another on one frame of

graph paper is desired, the integer N and the parenthesis may be omitted

from the plot statement. Then, up to one hundred coordinate names may

be plotted using a single PLOT statement, as

PLOT: grid type (TIME1,TUI2,CODE), Xl,Yl, X2,Y2, .o., XlOO,Y100$
mnemonic

(See EXAMPLE (2).)

Additionally, if the independent variable being plotted is time

(CODE - 1), the abscissa name, TIME, need not be specified,thus further

simplifying the PLOT statement. The PLOT statement would then become

PLOT: grid type (TIMEl,TIME2), Y1, Y2, Y3, ..., Y100$
mnemonic

(See EXAMPLE (3).)

EXAMPLE (1)

The user decides to cross plot threeOUTPUT variables with names

Vl, V2, V3 on a single sheet (one frame) of linear graph paper using three

separate grids. The reference time interval will be from 0 to 36 seconds.

The variables are to be plotted in the following manner: V2 vs. V1,

V3 vs. V2 and V1 vs. V3.

The PLOT statement is coded as follows:

PLOT : LINEAR (0.0,36.0,2), -1 (V1,V2, V2,V3, V3,V1)$

114

II D. POST-PROCESSING MODULE

PLOT (Cont'd.)

Note that N-l indicates that one frame of graph paper is to be

used. The negative sign indicates multiple grids are needed. The three

coordinates inside the parenthesis indicate that three grids are required.

The execution of the above statement in an actual MARSYAS program is

shown in Figure 10.

EXAMPLE (2)

The user decides to cross plot OUTPUTS V2 and V1 with Vl the

abscissa on a single frame of linear graph paper in the time interval

O to 36 seconds. Since N=l, both N and the parenthesis may be omitted

from the PLOT statement as shown below.

PLOT : LINEAR (0.0,36.0,2), V1, V2$

The execution of the above statement in an actual MARSYAS program

is shown in Figure 11.

EXAMPLE (3)

A plot of system OUTPUT V3 against TIME is desired, on one frame

of graph paper with a linear grid. The time interval is 0 to 36 seconds.

Since N=l and TDIE is the independent variable, the abbreviated form of

the PLOT statement is used. Figure 12 is an actual MARSYAS execution of

the following statement:

PLOT : LINEAR(O.0, 36.0, 1),V3 $

115

lID. POST PROCESSING MODULE

PLOT (CON'T)

V3

I I I I

s I I
I i I i i

I i I I
I I I 1

I I I I
I I I I IJ

I

48.0

I-T-

II

46.0 46.4 46.8 47.2 47.6
14-l-I- 1

V2

FIG, \ 10 EXAMPLE OF MrULTIPLE GRIDS ON ONE FRAME
PLOT: LINEAR (0.0,36.0,2), -1 (V1,V2,

V2,V3, V3, VI) $
116

v

42

40

44.8

I I I I I

:1

H-j'

48.4

4O

i~~tiiiI#~~ ii- 1 IiIII i

I

-F - lL----
I

I i

i!
-ltX- ~-
i I I I i

1I I i;

IID. POST PROCESSING MODULE

PLOT (CON'T)

- I . I I , I -

-tA-H-IA--i -

48J4 -+ T F+1

48.0

47.6

47.2

46.8

46.4

46.0

45.6
�Th

EliK -+4

A -
40

i.I

-4--

1- l

-_-

I Z

I

41

-I--

i i

//

42

±dE ½

~I.I~Ii
-H

- I , -]z l - I

-1 I- - I--

U
=1a-w

zi 11VI I I-

I-H

C-trnt-- K~ {r-; n-rt
ElTW44i14zj-T- --

. -, -- r-' + -i- I :-

I i i I I I I I I

- I- l i -,

E-4:-r.1I-
VI

FIGURE 11 PLOT OF OQ.E VARIABLE AGAINST ANOTHER
PLOT: LINEAR (0o0,36.0,2), VI, V2 $

117

- I 1- - I- A 1 1 - Li -i I

44.8

I .

44--144-d
---r---r -i -1 i

r--7�m -�rlI- i i --A --

-�ii�i�i�i�

i

I ! IJ

I I - e , . I '] - z o : I - I , ; -IX

I : I I i !-
I I I I F I i I tf - ' ' 'I1 I1 1 I-1

I I I - I , I--'
- |

, . I 'I i I

I - - L I! - i

=1 I I I -1 i- : ! ' ' itt

I I I I i I ~ ~. · - .--
-�-- Et-- � -

-1 H
. I I :

--- II --i

I

I I
I I

i i

-4E
¼F

al

IrI

FTF--- I

I I

--riI7-f-f--- f-·t

mi
4.3 44

----- -------

-+- -- i

I

IID. POST PROCESSING MODULE

PLOT (CON'T)

46.- 6 -TL- rT_ L] _
...--. I I I I --- -- t--+-t-I--L - - -i -t--- t--tl, 11

I m--l-lt-l- l-m imt m m -t-t-tl i i
i, IIii, , , , i , -I -- i

, W - t - ---- 'i - - - - -- ------

46.4

46.2

46.C

V

3 45

45.8

45.44 .4

45.2

ILL4-.4-.l-4-4-4--l--I---4--4-I --C-4 -4- - I--4-- -#- -.-4-- -4-4--

t-tI TI
1 2 4 6 8 10 1

IIII

IHI-1-i-
I 16 18 20 22 24 26 28 30 32

I '

-!t-i-- -t

--T-I :--ILLtI
34

TI mE

FIGURE 12 PLOT OF VARIABLEA GAINST TIME
PLOT: LIhEAR(0.0,36oO,1),V3 $

118

I T .I T II I I 1 1 1 i . . I ; I .: I I I.

45.0

4 .8a

36

I I

1-15--- f I I I I I I I I I I I I I . I . . . I . .

l

IN-
I 1 1 I I I I I I I I I I I I I . 1 L ' l-. - e--e--l-e-(tc

-Opr·3L - Ic--L -
I I I . I . I I I I I I . . I I . . I . . . I . . I I r

CU----l-i~itI - --tt-t--tt -t-t-fff I I t I

II

I!

I

j-i-rlI I

I

-11

II D. POST-PROCESSING MODULE

PRINT

FORMAT -

(1) PRINT: name 1, name 2, etc. $
or

(2) PRINT: (output header title) $

COMMENTARY -

The PRINT statement specifies the names of the system input and/or

output data to be printed. FORMAT (1) above yields the standard MARSYAS

output print listing of six columns of data per page. The first printed

column is always the independent variable TIME. FORMAT (2) allows the

user to specify a title heading which will appear at the top of the out-

put printed page.

The appropriate SAMPLE statement must be used in conjunction with

PRINT to indicate the print step desired (see SAMPLE). There is a limit

of one hundred input and output names that may be included in a given

PRINT statement. The MARSYAS processor will automatically print the

indicated variables in groups of six until the output list is completed.

EXAMPLE

(1) Assume the user's system has three inputs, INPUTI, INPUT2,

and INPUT3, and two outputs, OUTPUT1 and OUTPUT2, which he wishes to be

printed out, along with the header title FIRST TEST CASE. He decides to

examine his input-output data at every fifth integration step. The

PRINT and associated SAMPLE statements would be coded as follows:

119

II D, POST-PROCESSING MODULE

PRINT (Cont'd.)

PRINT: (FIRST TEST CASE)$

PRINT: INPUTI, INPUT2, INPUT3,

OUTPUT1, OUTPUT2$

SAMPLE: STEP, 5$

When using Runga-Kutta, if instead of examining the output at every

fifth integration step the user decides to examine the data at every

0.10 seconds, the PRINT statement would remain unchanged and the SAMPLE

statement becomes

SAMPLE: TIME, 0.10$

120

II D. POST-PROCESSING MODULE

SAMPLE

(1) SAMPLE:
or

(2) SAMPLE:

STEP, integer number$

TIME, real number$

COMMENTARY -

The SAMPLE statement is used in conjunction with the PRINT state-

ment to specify the output printing interval. The print interval may

be expressed in terms of the independent variable TIME or the integra-

tion STEP size. If TIME is selected, the step size is taken in approxi-

mately equal increments of simulation time as specified by the real

number in Format (2) above.

EXAMPLE

SAMPLE: STEP, 55

or

SAMPLE: TIME, .05$

In the first example, the MARSYAS processor will list the output(s)

at every fifth integration step, whereas the second will list the out-

put(s) in time increments of 0.05 units. -

121

J

FORMAT -

SECTION III

SOFTWARE STRUCTURE OF MARSYAS

122

IIIo SOFTWARE STRUCTURE OF MARSYAS

A. Introduction

The prime objective of the MARSYAS software is to transform a MARSYAS

program, which describes a model and specifies the simulation, into a

FORTRAN program that contains the arrays and subroutines for the numeri-

cal solution of the various matrix equations. The MARSYAS software is

thus a precompiler which compiles the MARSYAS language statements into a

set of FORTRAN programs called the Object Program which is then executed

by the computer.

B. Overview of MARSYAS Software System

MARSYAS was originally designed for use on a time-sharing machine

such as the Univac 1108 computer. The software permits several users to

access MARSYAS simultaneously from remote stations. An overview of the

MARSYAS software system is shown in Figure 13. The user's block diagram

and/or equations are coded in a MARSYAS program consisting of Description,

Modification, Simulation and Post Processing Module statements which are

punched on cards and fed to the computer. All Program Modules with the

exception of the Post Processing Module feed into the Simulation Program

Module which ultimately generates the FORTRAN Object Program. This, in

conjunction with the Library of Standard Elements and Excitation Functions,

is compiled with the FORTRAN Object Program and executed.

123

III B. OVERVIEW OF MARSYAS SOFTWARE SYSTEM

UARSAYAS- PROGRAt4

DESCRIPTION
MODU LE

STATEMENTS

BLOCK DIAGRAM MODIFICATION
E t U AT 10MiS tNOD U L E!

SIMULATION
3 rODULE

STATEMENTS

"' |. PoS-PRocESIPOS-PROCESSI
MODULE

STATEMENTS

C
A
N

NI
N
G

R
0
U
T

SI[E

E
R
R
o
R

C
N
E
C
K

DESCRIPTIOI POGRAM NODULE

TRANSLA71TNG CLOCK DIAGRAMS
At'D EQUATIONS INTO TEMPORARY
tMODEL DESCIPlTION TABLES &
4AEt'. DICTIONARY

MODIFICATION PROGRAM tODULE

:1.ESCTIT'WG AND DELETING FROM
tiODEL DESCRIPTIOr TABLES

POST-PROCESSING PROGnAM MODULE

GENERATING CONTROL CODE IN
FORTRAN TO PRINT. PLOT, AND
RECORD SMiULATION RESULTS

SIl'VLATION TEi'ORiRY FILE

PCST PARAm'ETERS FILE

TICT" TRANSFER FORTRAN CBJEC FPCPGRA-'
''PR3IF-_RLY STRICT 3
RTRAt- OBJECT STCi". TERCONECT,O', EIUATiONS SCLVE'S

- o DRIVER FO NONLINEAR - EXCITAT!CN
FUNCTIONS LIBRARY ROUTINES
DIFFERENTIAL EQUAINON INTEGRAT O'
ROUTINES
CHANCE LOOP
EXIT CONDITIONS ROUTINE

CONTROL ROUT!NES & IND:CATORS
EXEC VII; CONTROL CARDS

- OU'JTPUT PROCESSING ROJTINESI[i

LIBRARY OF STANDARD ELEMENTS
& EXCITATION FUNCTIONS i

FORTRAN-COVPILER

COMPILATION OF FOPRTRAN I

OBJECT P ,CCR A I

i
. ?
· ;

EXECUTION OF FO'?TRAN
OBJECT PROGRAM I

| S,"UATION RUN
I L

PRINT-OUT, PLOTTING
.[

FIGURE 130 OVERVIEW OF MARSYAS SOFTWARE SYSTEM

SIMULATION POOGRAtl MODULE

o ?E:ZGING MODEL DESCRIPTION
TABLES

* GC "A--N TIN'G S'JULATION
TEMPORARY FILE, CHANGE FILE

* PATH-TRACING FOR LINEAR &
N:ONL!NEAR INTERCONNECTION
ARRAYS

· IDENTIFYING 'ALGEBRAIC LOOPS"
o COt:VERT!NG "S

FUNCTIONS TO '
o GEt!RATING FO

PROGAC'iAM

a

.!

f~ -

. I-

I--~

i7-- ! -

,
i iI
I

i
I

J
I

I

III C. LIMITATIONS OF MARSYAS

C. Limitations of MARSYAS

Within the complete MARSYAS program, there is one main MODEL and

up to 99 SUBMODELS permitted. Each SUBMODEL, of course, has all the

characteristics of a MODEL. Models and Submodels are each limited to

a maximum of 50 inputs, 50 outputs, 300 elements with restrictions as

noted below and 500 connections.

For the main model and all its submodels, the following restric-

tions apply:

There may be a maximum of:

350 constant multipliers

150 transfer functions, including integrators

If Ni is the order of each transfer functions M

is the total number of transfer functions and

Li = Ni + 1, then

M

ZLi L 400

i=l

400 nonlinear elements

4000 parameters

600 inputs to nonlinear elements

400 outputs from nonlinear elements

125

III C. LIMITATIONS OF MARSYAS

For the Simulation lbdule, the following restrictions apply:

There may be a maximum of:

125 EXCITE statements

600 STOP IF and TERMINATE IF statement words

30 simulation CHANGE cycles

400 parameter changes per cycle

A "word" is the number of characters divided by six.

The following restrictions apply to the Simulation Module:

There may be a maximum of:

100 plot terminals

100 graphs

100 print terminals

350 Hollerith words for PRINT title statement

126

SECTION IV

MATHEMATICAL STRUCTURE OF MARSYAS

127

IV. MATHEMATICAL STRUCTURE OF MARSYAS

A. The State Space Approach

',ARSYAS has a basic mathematical structure which incorporates the

latest and most up-to-date mathematics associated with modern control

theory. The state space approach is used throughout, and directed graph

theory is used to detect and unwind algebraic loops automatically. These

methods have considerable advantages over older, classical methods.

There are no known methods that will solve every set of nonlinear

algebraic equations. Therefore, while many nonlinear loops can be

solved by MARSYAS, some will arise which will not converge. However,

most all cases of linear loops can be handled. An overview of the mathe-

matical process which is the foundation of MARSYAS appears in Figure 14.

B. Numerical Integration Techniques

The FORTRAN Object Program generated by the MARSYAS processor uses

precoded subroutines to control the numerical integration and detect

discontinuities which may exist in the model. Since serious errors may

arise when integrating through discontinuities, the MARSYAS system auto-

matically switches integration methods when a discontinuity is detected.

It integrates through the discontinuity using Euler's method. Euler's

method, being of first order, will yield more accurate results at dis-

continuities than higher order methods. Once past the discontinuity,

the original integration scheme is resumed.

128

IVA. THE STATE SACE APPROACH

EXTERNAL DESCRIPTION INTERNAL DESCRIPTION OF ALGEBRAIC LOOPS SYSTEMS
OF MODEL SYSTEM MODEL (MACHINE) I CHARACTERISTIC5

(USER)

nwra pp in
of Nested

m Is

B I Interconnections

B Transfcr functions I

E Lineer Differential Equations I

5 Bt Nonirevr Blocks

I Bi Logicel Functions

J E Al gebre ic Equartions-r P

P i Frron- programs

B Block Diagram
E Equa-ions

P Fo-tron -Progroms

Ali Vorabller are Vectors -

Input of System (Known)

Output of System

Input to Dynamic Elements

Output of Dynamic Elements

Input to Nonlinear Elements

Output of Nonlinear Elements

State Vector

Derivative of State Vector

All Cerficionts ore Matrices:

E,E', E", F,F',F",K, K',K¥

A,P,C,

A*, P,C*,DD

U

W

I

0

R

Y

X

k

Interconnection Matrix Equations

I : E O + F U + KY

R -: E'O + F'U + K'Y

I = -E"O+ F"U+ K" Y

State Variabie Matrix Equations

Xi = Ai Xi + Pi I

Oi : Ci Xi

Impiicit Nonlinear 7unctions
Y - - - - -

Yi = Fi (Ri)

<G- Numerical Solution per Time Step .t ->

Numerical Inteqratinn of State Variable Equation

Xn+1 ~ Xn +t 2 C i F(Xi, i t)
i =n-p

E iocnva lues

Computation of O n +I7 Rn +1 , Y.n +1, Wn + 1 - <

iteritive Solution of Nonlinear Algcbraic Equation

(n+1))F((n) A (nR
(n) ,

(n K n+1 -(R -P 1
n+ d R (n)

Overail Syt-:m
j Sste Vartbi1:. '.iot. ;x qtations

= A" X + P- U -:b N (O,UJ,T)

- C* X ID* U -l (O,U.T)

~-7 . I

Various Systoem Anolyes 1
Using A",P*,C

*
, and D*

- - -II

FIGURE 14, OVERVIEW OF MAT;EMAT iCAL PROCESS

_ I _ _

r-

p_� ------· ---- I----

L- - - . - - - - - -

.--

�C-�-�-T-�

l Y·d------ i .

u ------ -- --- -

ML , - . 1--

i

IV Bo 'NUMERICAL INTEGRATION TECHNIQUES

1o Runga-Kutta Method

The Runga-Kutta-Gill numerical integration scheme used by

MARSYAS is the fourth-order single step method which approximates the

solution of the state equation X(t) = F(X(t), t) at t = (n+l)h by

x+ X + h (K1 + 2 (1 VT)K2 + 2 (1 + ,f) K3 + K4)

where

K1 = F(Xn, tn)

K2 = F(Xn + Klh/2, tn + h/2)

K3 = F(Xn - (- N/o) Klh + (1 -) K2h, tn + h/ 2)

K4 = F(X - V K2h + (1 + .5) K3 h, tn+ h)

and h is the step size specified by the user.

2. Adams-Bashforth Method

MARSYAS actually uses the Adams-Bashforth predictor with the

Adams-Moulton corrector in solving the state equations. These multi-step

equations approximate the solution of the state equation as follows:

Adams-Bashforth predictor:

xn+l = Xn + h (55n - 5 9 Xnl + 3 7 Xn-2 9xn3)

130

IV B NIUMERICAL INTEGRATION TECHNIQUES

Adams-Moulton corrector:

h
Xn+ Xn + (9kn+l + l9Xn - 5kn- + Xn2)

These predictor-corrector equations have a definite advantage

with respect to solution time over the Runga-Kutta method in that at

most two derivatives must be calculated at each time step whereas the

Runga-Kutta method requires four derivatives. The automatic error

estimation procedure inherent in the predictor-corrector scheme allows

the predictor to select the optimum step length that satisfies the built-

in error criterion, thus further speeding up the solution time.

3. Euler's Method

Euler's method is implemented automatically whenever the MARSYAS

processor detects the presence of a discontinuity. Euler's is essentially

a first-order single step method of the form

X(n+l) = X(n) + X(n) h

The integration step size h is measured from the end of the

last full integration step before the discontinuity and extends past the

discontinuity as shown in the sketch below.

x I/ I

n b n+l t

131

IV B. NUIERICAL INTEGRATION TECHNIQUES

Thus, if a discontinuity occurs at time t=b, then the integra-

tion method will change to the Euler method at t=t and back again at
n

t=tn+1 to the method of integration used before the discontinuity was

encountered.

If the user has several discontinuities in his system, it is

recommended that Butcher's method or the Runga-Kutta method of integra-

tion be specified (using the INTEGRATE statement) since the solution time

will often be less than when using Adams-Bashforth.

Should the need arise, the user can disable the Euler-interrupt

so that the selected integration scheme can proceed uninterrupted. Addi-

tionally Euler's method can be used for the entire simulation if desired.

See INTEGRATE statement in Section II C.

4. Butcher's Method

The Butcher's numerical integration method use in MARSYAS is a

fifth-order, six-stage Runga-Kutta scheme which approximates the solution

of the state equations as follows:

n+l x + -O (7K1 + 32K +12K + 32K + 7K)nl n 90.012 + 4 5 K6)

where

K F (xntK1 = F(Xn,tn)

K2 nF(x + Klh/4, t + h/4)

K3 7F(x n + klh/8 + K2h/8, t + h/4)

K F(xn - K2h/2 + K3h, t + h/2)

4 n 2 13 2

132,

A

IV B. NUMERICAL INTEGRATION TECHNIQUES

K5 = F(xn + 3/16Klh + 9/16K4h, t + 3/4h)

K6 = F(x - 3/7Klh + 2/7K2h + 12/7K3h - 12/7K4h + 8/7K5h, t + h)

and h is the step size specified by the user.

5. Sarafyan Method

The Sarafyan variable step method is essentially an embedding

of Runga-Kutta formulas to achieve step size control. The Sarafyan

method used in MARSYAS is essentially a fifth-order, six-stage Runga-Kutta

formula (Butcher's) with an imbedded second-order Runga-Kutta formula used

to determine the appropriate step size. The fifth-order, six-stage formula

is the same as that used in the Butcher method above and the second-order

formula is given by

Xn+l = Xn + h(-K1 + 2K2)

where

K1 = F(x n, tn)

2 F(xn + Klh/4, t + h/4)

and h is the step size.

The higher and lower order Runga-Kutta schemes are compared

so that an estimate of the accuracy can be made. Then a judgment is

made on the current value of h being used. If h is too large, it is

halved. If too small, it is doubled. If just right, it is left as it is.

Computation accuracy using the Sarafyan method is high and

computation speed fast. Depending upon problem being simulated, computa-

tion speed can be increased significantly over fixed-step methods.

133

IV B. NUMERICAL INTEGRATION TECHNIQUES

Other numerical integration methods will soon be added to the

MARSYAS language allowing the user greater flexibility in solving his

problems.

134

IV C. SOLUTION SCHEMES FOR DIFFERENTIAL EQUATIONS

C. Solution Schemes for Differential Equations

When using the EQUATION option in solving a set of ordinary dif-

ferential equations, the user must check to see that a solution exists.

In other words, it must be possible to construct a "solution scheme" for

the system of equations. A solution scheme is an assignment of variables

to the equations such that the following three conditions hold:

1. There must be one independent equation for each unknown variable.

2. The highest order of each variable derivative in the set of

equations can be "assigned" to one particular equation of the

set. No two variable derivatives can be assigned to the same

equation.

3o The order of the variable derivative assigned to a particular

equation must be the highest order for that variable as it

appears in the system of equations.

EXAMPLE (1)

Determine if a solution scheme exists for the following set of

differential equations:

1) aX + bYX + Z = 0

2) + = 2XY

3) + = 0

In the above set of equations in three unknowns, X, Y and Z, the

three highest order derivatives are X, Y, and Z. They can be assigned

to equations 1), 2) and 3), respectively. Hence a solution scheme exists

for the system of equations.

135

IV C. SOLUTION SCHEMES FOR DIFFERENTIAL EQUATIONS

EXAMPLE (2)

Determine if a solution scheme exists for the following set of

differential equations:

1) + + XY = SIN (X - Y)

2) XY- XY = 0

These are two equations in two unknowns, X and Y, whose highest

order derivatives are X and Y. The derivative X can be assigned to

equation 1) and Y can be assigned to equation 2). Hence, a solution

scheme exists for this set of equations.

EXAMPLE (3)

Determine if a solution scheme exists for the following set of

differential equations:

1) X + + XY = TAN (3X2 + 2Y)

2) XY - X = 0

The above two equations in two unknowns X and Y have highest

order derivatives X and Y. Since we cannot assign two variable deriva-

tives to the same equation, no solution scheme exists for this set of

equations.

136

SECTION V

OPERATION OF THE MARSYAS SYSTEM

137

V. OPERATION OF TIE MARSYAS SYSTEM

A. Deck Setup for MARSYAS Operation on the Univac 1108 Computer Under
EXEC VIII

The following computer control cards are required to run a MARSYAS

program on the Univac 1108.

@RUN,

@ASG, X MARSYAS*-MARSYAS

@ASG,T 1,F

@DATA,I 1

MARSYAS DECK

@END

@ADD MARSYAS*MARSYAS.

@FIN

B. MARSYAS Diagnostics

There are two distinct types of error diagnostics in the MARSYAS

system, Statement Error Messages and Module Error Messages. The first

type deals with errors encountered in coding a given statement. When

an error of this type is detected, the processing of the MARSYAS state-

ment is terminated with an error message. That portion of the statement

in error is indicated with a series of backward slashes (\) under the

printed out statement. An error diagnostic is then printed out to aid

the user in correcting the problem. Since the MARSYAS processing termi-

nates after processing a group of errors, the user should recheck his

program to be sure no more errors are present in the non-processed por-

tion of his program.

138

V B. MARSYAS DIAGNOSTICS

The second type of error diagnostic will appear when the user vio-

lates the structural pattern of MARSYAS. Examples of this are if the

user should inadvertently place the Post Processing Module before the

Simulation Module, or if he forgets to place an END$ statement at the

end of a Module and so on. If a system is incompletely defined by

leaving out elements, connections, inputs, outputs, excitations, and so

on, the errors will be grouped at the end of the appropriate Module

under the heading "MODULE ERROR SUMMARY."

When Module Error Summary diagnostics appear in conjunction with

coding errors, they can usually be ignored until all coding errors have

been corrected. This is due to the fact that the Module Error Summary

diagnostics were generated as a result of the incomplete processing of

the statement containing the coding error.

A complete list of the MARSYAS diagnostics appears on the follow-

ing pages.

139

V B. MARSYAS DIAGNOSTICS

Statement Error Messages

NUMBER OF LEFT AND RIGHT PARENTHESES DOES NOT
MATCH.

Any parentheses that are opened must be
closed.

IMPROPER PUNCTUATION. A COMMA IS EXPECTED.

IMPROPER PUNCTUATION. A $ SIGN IS EXPECTED.
The statement has not been completed
properly.

IMPROPER PUNCTUATION. A COMMA OR $ SIGN IS
EXPECTED.

IMPROPER PUNCTUATION. A LEFT PARENTHESIS IS
EXPECTED.

IMPROPER PUNCTUATION USED IN TERMINATING
SEQUENCE.

EXPRESSION CONTAINS TOO MANY RIGHT PARENTHESES.

IMPROPER PUNCTUATION. A SEMICOLON IS EXPECTED.

WORD EXCEEDS 36-CHARACTER LENGTH LIMIT.

WORD BEGINS WITH IMPROPER FIRST CHARACTER.
A MARSYAS word must begin with one of the
characters ABCDEFGHIJKLMNOPQRSTUVWXYZO123
456789. Words which are not numbers must
begin with an alphabet letter.

WORD CONTAINS AN INVALID CHARACTER.

WORD CONTAINS IMPROPER NUMBER OF CHARACTERS.

OPERATOR WORD IS NOT A MARSYAS OPERATOR.

OPERATOR SHOULD BE INPUTS (OUTPUTS).

OPERATOR WORD MAY NOT BE USED MORE THAN ONCE IN
A GIVEN MODULE.

EXPECTED OPERATOR NOT CORRECT.

FUNCTIONAL DATA BASE PASS WORD INCORRECT OR
MISSING.

EQUATIONS MUST HAVE TWO SIDES.

INVALID OPERATOR IN PRESENT CONTEXT.

ONLY VARIABLES (NOT TIME) MAY BE DIFFERENTIATED.

MNEMONIC WORD IS NOT A MARSYAS MNEMONIC;

INTEGRATION MNEMONIC (CONSTRAINT) IS NOT A
MARSYAS MNEMONIC (CONSTRAINT).

MNEMONIC IS NOT A MARSYAS ARITHMETIC RELATION.
The MARSYAS arithmetic relational operators
are EQ, NE, GT, LT, GE, and LE.

V B. MARSYAS DIAGNOSTICS

Statement Error Messages

WORD IS NOT A MARSYAS LOGICAL OPERATOR.
The logical operators are AND, OR, and NOT.

IMPROPER GRID TYPE MNEMONIC.

IMPROPER SOLUTION MNEMONIC

IMPROPER SAMPLE MNEMONIC.

IMPROPER NUMBER OF PARAMETERS GIVEN FOR
ELEMENT.

IMPROPER PUNCTUATION. A COLON IS EXPECTED.

IMPROPER NAME TYPE USED AS ARGUMENT.
The statement requires a different type of
name in the argument position.

ARGUMENT SHOULD NOT BE DEFINED IN NAMING

STATEMENT.
The "old name" in a NAMING statement argu-
ment list and the "new element" in a
SUBSTITUTE statement should not be names
defined in a NAMING statement.

THE ARGUMENT HAS BEEN USED PREVIOUSLY IN THIS
OPERATOR CONTEXT.

Certain operations may be performed on a
given argument only once.

TIMESTEP CONSTRAINT SHOULD BE SPECIFIED.
If the Runga-Kutta integration procedure is
used, an integration step size must be
specified.

ORDER OF A TRANSFER FUNCTION MAY NOT BE VARIED.

MORE THAN ONE WRITE PARAMETER HAS BEEN SPECI-
FIED IN THE MODULE.

A POST-PROCESSING module may write output
at only one sample interval.

CANNOT CHANGE GAINS WHEN THERE ARE LINEAR
LOOPS.

IMPROPER NUMBER OF INITIAL CONDITIONS.

IMPROPER ELEMENT TYPE IN SUBSTITUTE STATEMENT.

EXPECTED ARGUMENT IS INCORRECT TYPE.

IMPROPER NUMBER OF ARGUMENTS.

NAME HAS BEEN DEFINED MORE THAN ONCE.
A MARSYAS name should be defined in only
one statement.

NAME IS USED INCONSISTENTLY.
Characteristics which are implied by previ-
ous uses of the name are inconsistent with
the present use of the name.

I

V B. MARSYAS DIAGNOSTICS

Statement Error Messages

PARAMETER HAS BEEN GIVEN TWO VALUES.

NAME IS NOT IN MODEL DICTIONARY.

MODEL NAME ALREADY EXISTS IN FUNCTIONAL DATA
BASE.

MODEL DOES NOT EXIST IN SYSTEM.

SOURCE CODE STATEMENTS ARE MISSING.
The program is incomplete.

SOURCE PROGRAM CONTAINS TOO MANY STATEMENTS.
A MARSYAS deck may contain 99,999 state-
ments.

THE SIMULATED SYSTEM IS TOO LARGE.
The MARSYAS system allows for 218-1l distinct
sequence numbers (objects).

MODEL IS NOT INCLUDED IN THE SIMULATED SYSTEM.

FIRST STATEMENT OF PROGRAM SHOULD BE A
MARSYAS BEGIN.

PROGRAM NAME IS INCORRECT.

MODEL INCORRECTLY RECORDED IN DESCRIPTION
TEMPORARY FILE.

FUNCTION WORD IS NOT A MARSYAS FUNCTION.

CONTINUATION NUMBER REQUESTED NOT ON CONTINU-
ATION FILE.

END STATEMENT SENTINEL MUST MATCH BEGIN DECK-
NAME.

A TERMINAL OF AN INCLUDED MODEL HAS NOT BEEN
CONNECTED.

FUNCTION (MATH REFERENCE) HAS INCORRECT NUMBER
OF ARGUMENTS.

USER DEFINED FUNCTION NOT ALLOWED AS A MATH
REFERENCEo

NUMERIC FIELD CONTAINS AN IMPROPER CHARACTER.
Besides the digits, a numeric field may con-
tain a sign, "E" or ".", and only these
characters.

THE VALUE OF THE NUMBER IS TOO LARGE OR TOO
SMALL.

IMPROPER USE OF NUMERIC "E" FORMAT.

THE NUMBER USED IS NOT PERMISSIBLE.
Certain numbers must be integers (non-
negative, positive, non-negative integers,
etc.). Element subscripts and parameter
numbers should be positive integers less
than 212.

V B, MARSYAS DIAGNOSTICS

Statement Error Messages

LENGTH OF PRINTED LINE EXCEEDS THE LINE LIMIT,
An output line may be at most 132 characters
long.

NUMBER IMPROPERLY FORMATTED.

A TRANSFER FUNCTION PARAMETER B(N) IS ZERO.

MODULE BEGINS WITH IMPROPER OPERATOR.

THE OPERATOR IS NOT PERMISSIBLE IN THE PRESENT
MODULE.

AN END STATEMENT MUST PRECEDE A NEW MODULE.
A module in a MARSYAS program is completed
with an END statement. A new module may
begin after the END statement.

THE SEQUENCE OF MODULES INVOLVING THE PRESENT
MODULE IS INVALID.

The order of modules for a given model
must be chronological, e.g., a model must
be described before it is modified or
simulated.

THE MODULE CONTAINS AN IMPROPER COMBINATION OF
IF STATEMENTSo

SYSTEM HAS NOT BEEN PREVIOUSLY SIMULATED.

SYSTEM HAS BEEN PREVIOUSLY SIMULATED OR
CONTINUED.

THE CONSTRAINT ILLEGAL IN PRESENT MODE.

I

V B. MARSYAS DIAGNOSTICS

Module Error Messages

IMPLIED INTEGRATION AND DEFAULT INTEGRATION
METHODS DO NOT AGREE.

MINIMUM TIME STEP LESS THAN STEP SIZE.

NO EXCITATION FUNCTIONS HAVE BEEN SPECIFIED
FOR THE FOLLOWING INPUT TERMINALS;

EXCEEDING SYSTEM CONSTRAINTS CREATED AN ABORT
SITUATION.

NO MODEL OUTPUT TERMINALS HAVE BEEN SPECIFIED
FOR THE MODEL.

NO ELEMENTS HAVE BEEN SPECIFIED FOR THE MODEL.

THE MODULE CONTAINS NO PRINT OR PLOT STATEMENTS.

A TRANSFER FUNCTION ORDER HAS BEEN CHANGED
ILLEGALLY.

THE FOLLOWING MARSYAS NAMES HAVE NOT BEEN PRO-
PERLY DEFINED IN THE ABOVE MODULE:

THE FOLLOWING CONNECT STATEMENTS CONTAIN
IMPROPER OR AMBIGUOUS CONNECTIONS:

THE FOLLOWING TERMINALS HAVE BEEN CONNECTED AN
IMPROPER NUMBER OF TIMES:

THE INITIAL CONDITIONS FOR THE FOLLOWING TRANS-
FER FUNCTIONS ARE INVALID:

I

SECTION VI

EXAMPLES OF THE USE OF MARSYAS

145

VI. EXAMPLES OF THE USE OF MARSYAS

A. Mechanical Extension Device - Example A

An analysis of the motion for a mechanical extension device has

resulted in the mathematical model presented in Figure 15. The motion

of the device is represented by the quantities 01, 02' 03 and 04,

which are the required outputs. The system input, 6, is subjected to a

ramp input with slope 25.136 units.

The system differential equation, as shown in Figure 15, is of

the matrix-vector form

A(0) 0 + B(0)(0) +C 0 + DU = 0 (1)

This system of equations is solved for G as

A -1 (') [- B(0)()2 - C - DU] (2)

There are two methods of solving Equation (2) using MARSYAS: the

block diagram method and the EQUATION method. The block diagram solu-

tion of Equation (2), shown in Figure 16, makes use of specially con-

structed DEVICEs to perform the required matrix multiplications. The

EQUATION approach solves a collection of scalar differential equations

in conjunction with one DEVICE to perform the multiplication by A- 1.

The computer printout of the MARSYAS programs using each method is shown

146

VI A. MECHANICAL EXTENSION DEVICE - EXAMPLE A

A |i 2\ F 1(e)2
+ I B I ()2

[Ii.6)2~ til (02
t g \ 04

[+j (@ =)

(a-i 1)

b cos (02-01)
c cos (03-01)
d cos (04 - 01)

0

b sin (02-01)

c sin (3 - 01)
d sin (04 - 01)

2k1

-k 2

0

0

-kl

0

0

.0

-k 1

2k 2

.- k3

0

0

0'

0

.- k4

0

-k 2

2k 3

-k 4

b cos (02-01)

(b-i 2)
c cos (03-02)

d cos (04 -02)

-b sin (02 - 1)
0

c sin (03 -02)
d sin (04 -02)

c cos (03-01)
c cos (03 - 02)
(c-i 3)
d cos (04-03)

-c sin (03 -i1)
-c sin (93-02)

o

d sin (04 - 03)

d cos (04- 01)
d cos (04 -02)
d cos (04 -03)
(d-i 4) I
-d sin (04 -O1)1
-d sin (04-02)

-d sin (04 - 03)
0

o
0J

-k 3

k4

I
FIGURE 15 MATHEMATICAL MODEL OF MECHANICAL EXTENSION DEVICE

147

WHERE

[

A =

L

D=- 1
L2

L

Vl A. MECHANICAL EXTENSION DEVICE - EXAMPLE A

FIGURE 16, BLOCK DIAGRAM. OF MECHANICAL EXTENSION DEVICE

0o

0e
02
C3

04

VI A. MECHANICAL EXTENSION DEVICE - EXAMPLE A

on the following pages. Note that the translation time for each module

is automatically printed out with the coding.

149

VI A. MECHANICAL EXTENSION DEVICE - FAIPLE A
(Block Diagram Option)

BtGI!N: EXAMPLEA
otvlc:L AINVP 3v 'is 7S

SUBiOt) jr Ir E A I NV(U Y , P)
:IMt:LNSIuN U(3)1 Y(q) 9, (7)

DI IMENS UN A (q tq.) ,V (3) ,JC() ,(q) -

A (I 1) P 1)
A ()= =) 5) (C0S(U ()-U (l) ...
A (I 3) =P (6)CUS C (U (3 I) (I
A I s)3P (7)'1 COS(IU('t U(I) I

A (2i1 :A IIZ,)
AC 2,Z)P Z) - . .(2)---.

A (2, 3 =(-P hC'OS (U (3) I (2)
A (2, q4) =1(7) 'CUS (U 1 't IU (2)
A 3 1) =A (19 3)
A (32)=A(Z93) - -

A (3, : (3)
A _3 '_) (7) COS () (34) tJ (3)

A(, I aA I ,I4)
A 4 2) = A 2 q)
A (,3 A (3 4)

N '
__ __ _V (I =3 O __

AO 210 9 1)=1(f - - -

CALL GJR (A, i'q , N , N. 5 l 52,SJC j v)

2 00 X(I) L (4+")

N= I
C A LL-r X .l ,__, sYs1 r!'_9'rL, t _19

6 t I) ' .i4
_.I ' 3 IF V(I)) 152,151,15Z-.
I I wRK I TF 16 , I S 3)

153 FORMA (M ATI'W ! A I" S INt(,ljt_ } -...
S I U P

I _?___*'?. i' E (6, 15') -

Isq F-oRAT (, OVERFLO,')

S~TONN
401; HLtTUENN~ ~

EN

DEVICE: BB, 8, Y, 35
ISUdA t9UT I N, ½F3 (U, Y * p .---

1MLr N5IsI r U 18Y) Iy P (31
D I !lE1S I O. [3 (Li ' i) X (q 4)

B 1 I I =O I -o

13(I s Z I) SIN(tJ(1)IU(1I I) -_-
B (I :3 = P (Z)e S I N (U (3) -U (I I))
B(I s : (3 P(3 1 i SNU() I (U 1

tB (2 * 2 0 o

BU 2 3 P I (= USI· U(3)-U(2))
'I:C2," : Pt3)¢SIrJ(U(9')-L{2])
13(2 3 I (=- ((,3)) 2

t3 , 3 1 - b(2 3

3 *1 P 3 ? S I N 3U (J
4 + 1 ")

150

VI A. MECHANICAL EXTENSION DEVICE - EXAMPLE A
(Block Diagram Option)

ts (' ', 2) = -L(C2, 4q)

Pl('4 3) =-B (3 .Y 4

P) JU 11 94
I t'l X (I U (I +'i) ~ o.

M '4
N=

CALL MX,'11..1 (X Y r1, M N 9 9M)
RF. fbOtol
L .ri L)

-EV ICE: MC, , I , _.

SUBKOUT I NE t1C Li Y P P
t) I Mi S I 0oi U I ,Y ('s) IP())

KfAL K
) I(r1 S I U 2 t" -

K(I = 1 -3) =

K (,"4 LI
Ki(2.1 =P C(2)

K(2,) =2¢P(2)
K I , 3) =- P 2)

K 3(2 3) = 1
K (32 3 , 3 -Z P (3)

.K 4 -3) 4- P (3)

K (3.2I =0- "(';-- =. .' . .. ---.. .-.

Kt (4 3, 3 =-') '4)

r 3. -3M . ----

.CALL iXIi. (K, U, , , M,,I , 0 1)

1E furiU4

DEVICE:)11, 2, '-, 2$
SUBOUuT11NE Pm (U, YNP

DLMENSIUN U(2q,Y21 ,(
P) f m, i{ I ==P C I , 2

L i)u

L)[, - -

........ -i f F O i .N - l,-(U y-.

C (LL MX IlS)TtK U(toY tM11)

M 12

C A LL MXNXL T D U Y ,M ,L. N ,M9L)
RET Li I N

IDEL : EXTLNFNvS I (.1% I '

)(NPUTS: THEA,, DELTA)=

) 1 -Z I =

D 12s l') L}*
. -{ ,Z ._j ,

D(H 3I)=(3e

O) (C z* 32-}='-') { 2)
- -N=I

.... (hlAI L MXMlLT (n, u ~ r, L1' 9L., N. M, L)
R E r Ui~ rlF,

i'1013 h-L:L E XTI'NSIJor')Ev vICE-S
[HPO;JTS': THEIAO, DELTA4S

1_51 E

VI A. MECHLANICAL EXTENSION DEVICE - EXAMPLE A
(Block Diagram Option)

OUTPiU I i:

t L E Ei rI'S

CONNEEC r

.,o

TLIE [A , lHl I'A2 9 I tETA3 , TIl- T A4S
AINV, AX(6A2.4233AW) ' 0o36127F, 6rZ96th5, 3 0 t2qZ.5!, 6o366.27S,

6o 304 1Sh 9 6o2' 0S)$
B , 3X(6c.36b275, b3o0'qi6 6'o? 42IbS

.: _1C ... CK y 1 ~ | l. Ll 9 1g 1) h)S

D , L) (D nI 9 l(O) I
A:D, AO I sl Z s A) 1 3 9
I INi l , I ' 13 9, ls s 6 IN7 I N8'4
T ETAO A It l X 4l I, Al) s 4t; AXtl S I N 1 N2 9 T ETAI 1 , -. . -
PELTA 2 ,1)X 2 9 A2U9 6.AX 42 rN3 INq4 TH1E'A2$
)X.43 , A3s 7.MAXe3 I[1 : Not tHE-TA3S - - - - -

X", A!) , 8 AXt [1 Ns T lE'A,I N2s 1 I CX~~ 1 s, a\p ~

1N6, 3 ts C 3, ' ts- - - - -- - -

11n,1 '4 lC A i4, A D'iS
AAjZ

.... I ":6s, 3r;CZA3
. .N.4 .2 #_ AX t;

N6 A .6 -3 -- A -- --------.
8 ig 9 14 $-I A/ X 'S

_ 2. , l u;XY 1 I .A $ JIS - - . - . -
| i ,\ tt9 ts 1u Y, " 2 , fA U Z 5

IrO16 2tiBq4,3 A AO -
_ _1 } ; "1;X.,t;S A,''.

INS3, 6 X ,

I N7, 8 tBXG
EN DS

S 1 1 ULA rE:
t0ODEL

EXTENS10)NDEVICE$

I e 1 3'tiJ 5ECC

EXCITE: DtELTAs FtAMP(Zi.136), TItETAO, ZEROS
.... s-i: F - -T- h ~ -, -' -' ~',r------. -.. .. ------.-.. -.-. ..-.. ----.............S1,0I-11p: TM*T.......

IE N" A)
ALI INI r I AL CONDI TT i'NS HAE'L 6'Ei" UEfAIi EAtl-TD ... 7..t...

1-' R I N t :
SAi L':

E N D6

s - .A T - 1A- - - - . 3' 3 . -J S. f
DELi'A; TETAi FHET2,2 TiETA3, Tr LTAq5
STE t-, 'sI

POST I'HOC
EXAMiPLEAS

3o43:t230 SEC
- ---- . ..-

TOTA l.s.-- - - SEC,

152

.

VI A. MECHANICAL EXTENSION DEVICE - EXAPLE A
(Equation Option)

G £X t F ; - -- - - - - -. - --. - -----..-- -..

DEV I CE ; AItN't 8 'I. 7T.

SIJIRROLIT I rjE p rI NV (uy P

D I ME'S I. N l () Y(} IePJq (7)
D H I H llS I UN AC(4, 't) V(3) D JC(q) jX q 4.)
A 19I 1I =P (I)

- A I) =t (1) 5 eCOSIU(21'(! I) .. . -,F-(-'^--......
A 1 .3) =P 6(h) ,COS (U. (3 (3) C)
A I '4) : (77)o COS ((t) (I) I- - . .7C.......
A (2 1) =A (1 , 2)
A (,2)aP 2) -..-.............-. ---.-.-.-.---
A C 2 3-) P (h) COS IJ (31 1 ()) C

........-:A- 1) .? =4)-{e'74) CnSI!('Y');-(2- -. ---.-.........

AC3,)=A{1,3)
A (3,) =A(? 3) --
A (, 3 = 3 P F(3)
A (3 q) :? 7 (7) T COS CI (4)-! (3) !)

A (q4 J - (I pi)

A (4 : 3) . (3
-A (q, =P 4(q
N L4

V I) 3 . .
CALt. GJR (A , 9 N , N N , I 5. JC , \!

c0O To 411__ --- -

... IO- 2. V' I I = 1 7-q - -. - . .--

5 I T200 T) 15 3

C53 IXtiOLTRA T t1 A R I X A 9 N 9 f) . I (.A.......
GO TO Pq

'-!-- 0- -' IF- -(V-(- l)) 1 52-9 1Sz91 ~I-- ----- ------------------- --

!51 'OR I T _F 1(6, 1 5 3
^ 53 FORe;,iT (, '. IATR IXY A I S Sl;,l'tJI. A~* ..).--.-........--......-.....-......-....-.-......

STOP
[S52 W,'R I T E (6 fi I5') -.......--.........-..---.......---.----.--..----.-------.---.---.--.--..-.---.
]5 FO:'il.T 1 A OVERFLO('/6 1

S5 T n P-
400 R E T U P N

EN q r)
lMODEL . XTENS 0M OlEV T CE, EFttlAT I OMU
INPUTS: TO, [)EL', ;....
OUTPLITS Tol, TO? T03, TOtIS

.-. EOLIA T 1! : . .PT-- - L I'-- o - ' -- T-- T 2-~T-1-- --- T2- --- Z+--C---S -
. T3 - TI) 0 T3 t ¢-o 2 + D o S! I o 9 o I Tq -

TI) Tq 0' 2 + 2 K . Ti -- K T2 K- -- o--TO S .-. ..

P2 TS (, , T2 TI) TI e 2+ C SI (.1

n , ' T3 - T - -1- I 'I3 '° *o 2-+ -P----$-l (-' Q- - -f
T2) Tq o4 2 - K TI + 7 * T2 - K o T3 S

.. 3 3I------ C'-P-- SI '-'- , - .o.T3---T'-t)L '-l e- --i 2' C '- s - -,

C . T3 T2) * T 2 '(D * Sl * 5 I T' .
T3) c T -- 2 K - T2 +- "-K ' T Y---T3-T-K---'T--,-- ..

P4 = I) SI (1o T T . T TI) T 2 D S1(lI ,
i , T T2) D --S C T- 9 --- '-I I -, -- " 4 -
T3 1 T3 3 2 K * T3 0 T T - K D UL L

... :-'- 6 363275 $ -- -- ---.----

C h A 3 4 I16 ;

153

- -

VI A. MECHANICAL ETENSION DEVICE - EXAMPLE A
- (Equation Option)

I

- ENDS - - -

51 MUI.ATE:

EXC I TE:

K = Id c ;

TO T TI I
TO2 = T c.

T03 T3 ' A.
T O q T 4 q

-T I A I ,'V tfi2335 ' , .. O- 361 I77S- 5 o?9919-' 6S- 3o242CS- 5.5..
Ao366275 9 6a3 C 6, 9 6a,6'2q4 % 9 TI 9 Tr2 T3
T4 Pt ' t' P2 P3 9 pq4 - I) S .- ----- -

2 AlIfVIo'!233 5 6&o.16127; , 6o79,165 3A22gS5

...6o3A27 , Ao3416 6 2t C S - TV [2'- T 2 4 3
T'J - P I P? P3 Pq 2)5

T3--- -= AT"?! V(t 'I 233 P f -. 6- c 3A I1 275 :, 9 -6 c 799 .. S 3 o'2 qZCSS 5 -
6o36677 6 6C3q1 l6' , 6o.?(2. , TI T2 , T3
T-4 - P - 2 P 3 , p3 t -3)' S -- I -3--

Tq = AINV (A.'4?33S 6 o36 127S ' 6o299 1 6S 32'l2C,;5 9

3- A - 36A?77 s 6'o3;' 16E 6024?57ri s -T '- .. T2 t --T3-
Tq , P! , P2 P3 P4 P 4

E.XTENS I ONDEV ICES

DEI. FRA.flP (2 .- 34) , T.'3 -ZERO,
STOP !TF: TIrlFcGT e?5f

- - --t ND --- S- ------L--A-T- -- ------- ------ ---- --- - - - -- - .

PR I NT:
SAMPLE:

DEL_ 1 l' It, TO?, - T3, T- TO
STEP, 1 qr

-E I-! nD --- - -- - ...- -..

POST PROC

EXAMPLEAm

TO1 AL

1 ,9 3C1800 SEC o

154

EN D:

VI B. DO NOTHING SYSTEM WITH SUBMODELS - EXAMPLE B

B. Do Nothing System with Submodels - Example B

The system block diagrammed in Figure 17 contains most of the ele-

ments contained within the MARSYAS library. One purpose of presenting

this fictitious model is to illustrate the use of submodels and how

they are interconnected within the main model. Most of the features of

MARSYAS described on the preceding pages (with the exception of EQUATION)

have been incorporated in this example. It is intended to be used as a

learning aid for the beginning MARSYAS user.

155

Vl B. DONOTHING SYSTEM WITTH SUB.'VDDELS-EXAIAPLE B

I- G-A I-.- - - - - -

AD2 [GAMMA --------- ADS AN

i 2 Fi L 6 L6,>I I

{I
-- 1

CM2 BL2
L I

02

BL3

i b II BL5 I--

L- - - - -- - -

0

1B2

CM13 IAD9

C02 NL4 SI2

7GA--A' -- -

FIGURE 17. BLOCK DIAGRAM DONOT.',,NC SYSlTEA,

AD1
II 1

16

14 1

01

NL3

.-n

-1
I
I OB2

AD5 I
l OG2

03

I
I
I
I

I

I

I

I

- I

VI B. MODEL OF DO NOTHING SYSTEM

BEGIN: EXAMPLE B$
* A USER DEFINED ELEMENT$

DEVICE: AT, 1, 1, 1$
SUBROUTINE AT (AI,AO)
DIMENSION AI(1), AO(1)
AO(1) = ATAN (AI(1))
RETURN
END

* A USER DEFINED FUNCTION$

FUNCTION, DFSIN, 5$
FUNCTION DFSIN (D1, D2, D3, D4, TIMEX)

C THIS FUNCTION IS ALSO PART OF THE MARSYAS LIBRARY
IF (TIMEX .LT. D4) GO TO 1
DFSIN = D1 * SIN (D2 * (TIMEX - D4) + D3)
RETURN

1 DFSIN = 0.0
RETURN
END

MODEL: DO NOTHING MODEL$
INPUTS: I1,I2,I3,I4,I5,I6,I7$
OUTPUTS: O1,02,03,04,05$
ELEMENTS: AD, AD1,AD2,AD3,AD9,AD12$

: SI, NL7(1.,2.), SI2(2.0,3.0)$
: PF, BL7(1.0)$
: ML, I\L1$
: RE, NL3$
: TF, BL3(2,1.,2.,3.,4.,5.,6.)$
: HS, NL4(5,-2.,-2.,+2.,-2.,+6.,+2.,0.,+2., +2.,-2.)$
: HS, HL4(5,-1.1,-2.0,+3.,-2.0,+7.,+3,0.0,0.0, 0.0,0.0)$
: CO, NL2(1.0,2.0)$: C02(2.,3.)$
: LM, PL4(2.,-1.,3.)$
: DV, DV1$
: IT, IT2$
: CM, CM8(3.),CM9(4.),CM10(8.),CM11(5.),CM12(7.),CM13(6.),

CM15(9.).$
: AT, ATT(1.3)$

SUBMODEL: BETA; INPUTS: IB1,IB2,IB3; OUTPUTS: OB1,OB2,0B3$
SUBMODEL: GAbMMA; INPUTS: IG1,IG2; OUTPUTS: OG1,OG2$
SUBMODEL: ALPHA; INPUTS: IA1; OUTPUTS: 0A2$
CONNECT: I1, I#NL1, AD1, NL4, AD2, PL4, IG1, OG2, AD3, BL7, NL7, 01$

: 12, 2#NL1$: NL4, CM10, AD1$: NL7, CM8, 1#DVI, AD3$
: BL7, CM9, 2#DV1$

157

VI B. MODEL OF DO NOTHING SYSTEM

I4, 1#NL3#1, AD1$: I6, 3#NL3$
I5, 2#NL3#2, IA1, OA1, IG2$: OA1, IB3$
OA1, i#IT1, ATT, 05$
ATT, AD9$: IT2, CM12, AD9$
AD9, SI2, NL4, CM13, AD9$
NL4, C02, CMll, 2#IT2$: OG1, 04$
I7, IB2$: I3, AD12, NL2, CM15, AD12$
NL2, AD2$: OB1, 02$
NL2, BL3, IB1, OB2, AD3$
OB3, 03$

CONNECT:

CONNECT:

END$

MODEL: G
INPUTS:
OUTPUTS:
ELEMENTS:

CA,
CONNECT: IG1,

: NL6,

MODEL:
INPUTS:
OUTPUTS:
ELEMENTS

SUBMOD E
CONNECT:

END $

: AD, AD5 $: TF, BL6(4, 0.0, 1.0, 0.0, 0.0,
1.0, 1.0, 3.0, 2.0, 1.0)$

CM1(2, +1)$
1#NL6, AD5, BL6, OG2$: BL6, CM1, AD5$
OG1$: IG2, 2#NL6$

BETA$
IB1, IB2, IB3$
: OB3, OB2, OB1$

S: AD, AD4$: DV, NL5$, TF, BL4(4, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0,
0.0, 3.0, 0.0, 2.0)$

AT, BL5$
GAbMMA; INPUTS: IG1, IG2;

IB1, AD4, 2#NL5, BL4, IG1,
IB2, 1#NL5$: NL5, OB1$

OUTPUTS: OG1, 0G2$
OG2, 0B2$: BL4, BL5, AD4$

: IB3, IG2$: OG1, OB3$

MODEL: ALPHA$
INPUTS: IA1$
OUTPUTS: OA1$
ELEMENTS: CM, CM2$: DS, BL2(2.,-3.)$
CONNECT: IA1, CM2, BL2, OA1$
END$

SIMULATE: DO NOTHING MODEL$
EXCITE: 17, DSTEP (1.0, 2.0)$

: I1, ZERO$: 12, FSTEP(1.0)$: 13, FSIN(0.8,60.0,0.5)$
: 14, DSTEP(2.0,5.0)$: I5, FRAMP(2.0)$
: 16, DAMP(1.0,2.0,3.0)$: I7, FPULSE(1.0,2.1)$

INTEGRATE: RK, TIMESTEP, 0.01$

158

AMMA$
IG2,IG1$
OG2,OG1$
IT, NL6$

I .

VI B. MODEL OF DO NOTHING SYSTEM

CHANGE: RUN2; EXCITE: I7, DFSIN(1.0,1.O,O.0,1.0)$
CHANGE: RUN3; PARAMETERS, GAMMA, BL6(3, 2.6)$

TERMINATE IF: TIME GE. 20.0$
END$

PLOT: LOGLOG(0.0,20.0,1), 01, 02, 03, 04, 05$
PRINT: I1, I2, I3, I4, I5, I6, I7$
SAMPLE: STEP, 10$
FOURIER: 04(8.0)$: 06(8.7)$
END$
END: EXAMPLE B$

159

VI C. VEHICLE STABILIZATION SYSTEM - EXAMPLE C

C. Vehicle Stabilization System - Example C

The Vehicle Stabilization System shown in Figure 18 is an example

of a system containing nested submodels and differential equations.

This is an example of mixing the block diagram and Equation methods to

solve a problem.

160

VI C, VEHICLE STABILIZATION SYSTEM-EXAMPLE C

F CONTROL SYSTEM X1

FIGURE 18 VEHICLE STABILIZATION SYSTEM BLOCK DIAGRAM

VI C. VEHICLE STABILIZATION SYSTEM - EXAMPLE C

VEHICLE STABILIZATION SYSTEM$
CONTROL SYSTEM X1$
IN1, IN2$ OUTPUTS: HI, V1$
: RE, RESOLVER $
ACTUATOR STAGE 1 AND 3; INPUTS:

OUTPUTS: ACT1, ACT2$
: GIMBAL3; INPUTS: G1; OUTPUTS: (
IN1, A1, ACTI, 1#RESOLVER#1, H1$
ACT1, 2#RESOLVERI#2, G1, GIM1, A3$
IN2, A2, ACT2, 3#RESOLVER $
GIM2, V1$

Al1, A2, A3;

GIM1, GIM2$

* THE FOLLOWING IS THE DESCRIPTION MODULE FOR SUBMODEL ACTUATOR STAGE 1 AND 3$
MODEL: ACTUATOR STAGE 1 AND 3$
INPUTS: A1, A2, A3$ OUTPUTS: ACT1, ACT2$
ELEMENTS: AD, AD1, AD2$: TF, MOTORA(2, 0.0, 3.0, 5.0, 2.0, 4.0, 7.0)$

: LM, LIMITERC(1., -3., 3.)$
SUBMODEL: GIMBAL3; INPUTS: G1; OUTPUTS: GIM1, GIM2$
CONNECT: A1, AD2$: A2, AD1, MOTORA, AD2, G1, GIM1I, ACT1$

: GIM2, ACT2$: GIM2, LIMITERC, ADI$: A3, AD1$
END$

* THE FOLLOWING IS THE DESCRIPTION MODULE FOR SUBMODEL GIMBAL3$
MODEL: GIMBAL3$
INPUTS: G1$ OUTPUTS: GIMI, GIM2$
ELEMENTS: AD, ADI$: CM, GAIN5(-10.3)$
SUBMODEL: CONTROLLER; INPUTS: X ; OUTPUTS: Y, Z$
CONNECT: G1, AD1, X, Z, GAIN5, AD1$: Z, GIM2$: Y, GIMl$
END$

* THE FOLLOWING IS THE DESCRIPTION MODULE
MODEL: CONTROLLER, EQUATION$
INPUTS: X$ OUTPUTS: Y, Z$
EQUATION: Z' + Z = X$

: 5.0 * Y" + 2.0 *Y' + 3.0
END$

FOR SUBMODEL CONTROLLER$

* Y = 2.0 * X - 5.0 * X ** 2

SIMULATE: CONTROL SYSTEM X1$
INITIALIZE: ACTUATOR STAGE 1 AND 3, MOTORA(1.5, 12.0)$
EXCITE: IN1, FSTEP(5.0)$: IN2, FSIN (1.0, 3000.0, 0.0)$
TERMINATE IF: TIME .GT. 2.0$
END$

PRINT:

FOURIER:
END$

(VEHICLE STABILIZATION SYSTEM, RUN ONE)$
IN1, IN2, HI, V1$

H1(1.3)$: V1(1.3)$

END: VEHICLE STABILIZATION SYSTEM$

162

BEGIN:
MODEL:
INPUTS:
ELEMENTS
SUBMODEI

SUBMODEI
CONNECT:

END$

TABLE F S P :DtRDAD EL E,, ti tS

163

TABLE OF STANDARD ELE/'4ENTS

TRANSF ER
FUNiCTi ON

CONSTANT
MU LT FLIER

AD DE R

IDEAL.
RELAY

-(t)

N

i=O

N
Z b.s i

i=0

o(t)

i(t) o(t)
--- ~ -:

N

i=C

N

d i o(t)
I dt i

di i(t)

dt i

o(t) = K i(t)

N
o(t) = Z ii(t)

i=l

OUTPUT

/_1 // F .J T

tFD PAFr, MET7.RS I] TY E ORaDER ',% ...,"', 7 Y
AP?9EAR 1, T:E EL.,EN .S STATEM: ENT

N = X:IG EST POWER OF TRANSFER FUNC,!CN

(,' N, N' -1 , a -2, 0 b, b-l , b ' 2 1 b0)

NCNE

K

(;(> O)

(a,b,c)

(EITHRIER a> 0, b < 0, c > O
LIM4lT ER

or c<O, b>0, c<0)

�iI

I11

ilI

TABLE OF STANDARD ELEMENTS (CONT'D)

o(t) = arcsin(i(t))

-1 < i (t) <: 1

2 < o (t) _ 2

o() =. arccos (i(t))
-1_<i () _< 1

0<o (t) < 7f

o(t) = arctan (i(t))

-ff < 2 <
2 2

-1 t 2(t))
o(t) = ton "--

o< o (t) < 2 7-

LIST OF PARAN.'7TE2S WI T.IE GBRDO R '.N W./!C]4-

THEY APPEAR iN Ta ELEMENTS STA75 i .NT

INON E

n IS THE NUMBER OF INPUTS

NONC

I
I

ii
I
r

I
i
I
t
I
I

00)=)24..+ iW

TABLE OF STANDARD ELEMENTS (CONT'D)

LIST OF PARAMETERS ;N THE QORDER
CLASS BLOCK DIAGRAM # OF # OF MNE- INPUT-OUTPUT IN YVICH THEY APPEAR ;:7 THE

SYMBOL INPUTS OUTPUTS MCN3C RELATICN -=LE~ME,"TS STAT!'-., T:,,c,

t

INTEGRATOR i (t) 1 IN] (t)O E
S

0

n = NUMBER OF POINTS

0(0)
4 IC 3

2 q vil L (n+l, xl, Y1 ' x2' Y2 x, yn,

HYSTERESIS (t) 1 1 HS xc i)

6 / 9STARTInlG ?CITS
'5 NOTE: THE DEFINITION OF THE PCONTS

COMPRIS:NG T 7'; CLOSED SYSTELA
CAN START AT ANY ?CFT OF
T'-~E FIGURE. THE C R IE ,'
'dWHiCH THq.'. PO;,;TS AVE GIVEN
DETERVNES T'-:E D!RECTiON OF
THE YST E ES So

.

TABLE OF STANDARD ELEMENTS (CONTVD)

J
BLOCK DIAGRAM # OF # OF MNE- INPUT-OUTPUT LIST OF PARAMETERS IN T;;: ORDER 5N 'ICH-

CLASSSYMBOL INPUTS OUTPUTS MCNIC II"hcRELATION THEY APPEAR IN THE EL2EWENTS STATEMENT

EXP- it) EXP o() 1 EX o(t) = ei(t) NONE
NENTIATOR

i I

LOGARITHMIC i(t)_ LOG | 1 1 LN o(t) = log e 1(t) , i(t)>0 NONE

.'.. i
eI

SINE (WE 0(t) 1 1 0Si o(t) = sin(ai(t) + b) (a,b)
j (i assumed to be in radians)

OSINE COS CO c(t) = cos(ai(t) b)
COSINE i(t) COS t(t)b 1 1 CO (a,b)

(i assumed to be in radians)

_ I__ ---- I

(o, b)

. .- .._, . _ - ._ -. ' . . - -. _ _--,

i(t) o(t)
TAN -

o(t) = tan(ai(t) + b)

(i assumcd to be in radians)

- I

II
I

I

I

i

I

I

TANGENT 1 1 TN

TABLE OF STANDARD ELEMENTS (CONT'D)

CLASS BLOCK DIAGRAM # OF # OF MNE- I'lPUT-OUTPUT LiST OF PARAETERS IN THE ORDER IN W/'.!CH
SYMBOL INPUTS OUTPUTS MON[C j RELATION THEY APPEAR !N THE ELEMENTS STATEMENT

·. j

SWITCH X2 1 SW 2(t) T

S 0,I ()<T "T

SIGN CHANGER 1 1 SC o(t) =- i(t) N
-.(t)

TIME VARYING
COEFFICIENT

1

o(t)= i(t) of (t)

y

f(t)TVi;) - ft il 0t

-- -- -... - --

I1

TABLE OF STANDARD ELEMENTS (CONT'D)

DEAD SPACE

INPUT RELAY

FUNCTION
SW,'TCh

OUTPUT
R E.LAY

o(t)

b

i 2 (),i 4 (t) = o

i3 (t),4 4 () <

i

LIST OF PARAME:T EKS !N TrNE .ORDER IN VI/ICH
TX-,Y APPEAR iN THe. ELEM -W'!TS STAT : 'l EX{T

(a,b) ,"- c >

a AWD/OR b W, AY ' ECSIT V OR CEGAT7;V .

T

T

I

'I (t),'3 (2) � T

i 2 (f),'3 (t) < -�v:

'I (t),'4 W > 0

II
I�l
I
11,

TABLE OF STANDARD ELEMENTS (CONT'D)

CLASS BLOCK DIAGRAM # OF # OF MNE- INPUT-OUTPUT LIST OF ?ARAMETERS ON THE ORDER IN WH-XICH
SYMBOL INPUTS OUTPUTS MNONIC RELATION THEY APPEAR IN THE ELEMENTS STATEMENT

i2 (t)0

i l t, . 2 t . .1

ilit) \ o (t) i ti t
(2 1 BM o(t) = NONE

0, i2 (t) = 0

BOOLEAN - - - - - -

RELAY 2 (t)

2(t) 0o i2 1 BR () NONE

i1 (t),i2 = 0

13

. -. .J

01 cIl os (i3) sin (i3) i['
RESOLVER 3 2 RE [1 11 NONE

. 2 -sin(i 3) cos (i3) i 2

THRESHOLD
-1

1 TH 0o(t) ={
I, 11(t) > I

0, Ii(t)I < I

I

(I> 0)

1

- BLOCK DIAGRAM OF # OF MNE- INPUT-OUTPUT LIST OF PARAAMETERS IN THE ORDER N',H ,.,CH
CLASS

SYMBOL INPUTS OUTPUTS MONIC RELATION T1 EY APPEAR iN T:HE EL.EMENTS STATEEMENT j

ABSOLUTE t 0(t): 1 1 AB o(t) i (t)I ONE
VALUE A

S E o(t) = i(nT), T
SAMPLE * (1 -Ts0(t) 1 1 SH hT < t < (n + 1) T, 1
AND HOLD s 1 , (T > 0)

n = 0, '1, 2,0

MULTIPLIER X 2 1 ML o 2 (t) Ni l(t) O E

i2(t)

i 2(t
DIVIDER 2 1 DV o(t) - 1 NONE

i2(t)12t -. 1
* IF SUCH A DEVICE IS INCLUDED IN THE SYSTEM, THE RUNGE KUTTA SCHiEME

FOR iNTEGRATION MUST BE SPECiFIED IN AN iNTEGRATE STATEMENT IN ThrE

SiMULATION MODULE WITH TiMESTEP LESS THAN To

-

, I 7 = = - I , - _ :: = . = I - I---

I

I
I

i
I

-1I

TABLE OF STANDARD ELEAMENTS (CON''D)

#P OF
BLCCK D'AGRAM iOF CU F MNE- IN?UT-.T.w PUT LCLASSOUT-

SYMBOL INPUTS pUTS MOCIiC RELA T.N . T

CONSTANT i(t) o(t)
ADDER C I CA1CC

POiER (t) 0 (t) 1 o(t) = (i(t))
Z IONPFi~~ FUNCTION >j I z R 7-AL'

ARs!TRARY

GENERATOR

MCORMAL
R A- LY

i() > o

d 1 i(t') > d

(c, + i)

z

n = NUMB,'R CF ?C: iTS
y; c r,c.'y,Ž~i -IN

(dl,d 2)

Ij

'i

.IST CF PARAMETERS !\�'4 T.' ,", r_7 ', ') -,, �- I 1 6"� 1-1!.! � - ";

'7W 'H'� - - -7 ' - 7- 77'
�, 7 j ', . ;'.' - '. - �Z, - 1 � , T - ':-' ' 'i _: X 7

di

- d2C)' $

0(t) tx2' y

if C',
1�I "I11 IYI)

TIULE3 OF S~TIQ1TD EEXCITATIO'l FUNiCTIONS

173

TABLE OF STANDARD -XC:TATISN FUNTIONS
r *1

FUNCTION AND TYPE MATHiMA"ICAL GRAPH
ARGUMENTS DESCRIPTION I

d

| F (t)

FSTEP (d,) - STEP INPUT F(t) =d, * 0 0 o. T l;_E

Ft) A d2 FRZ-,CUENCY, RADIANS/SEC

.|d3 PH1ASE A~LsRAD1NS

FSIN (d, d2 ,d 3) SINUSOID F(t)= dsin(d2 t+d3) TIM

F(t) A

FRAMP (d1) RAMPINPUT F(t) =d1 t tIM

d1 = SLOPE

F(t)

=d 1, 0 '- t < 2| d I

FPULSE (d1 , d2) SQUARE PULSE F0)t t

2 d2 TI VE
T.

TABLE OF STANDARD EXCITATION FUNCTIONS (CONT'D)

FUNCTION ANDFUCTION AND TYPE DESCRIPTION GRAPH[ARGUMENTS

A
TRAIN (n, t 1 ,yl f2, ARBITRARY F(t)=y (t4 y4) (t8,y 8) (,9y9)

; 3,y3 PULSE TRAIN | y 7Y)

2PTR N 1 3, P (tR I ARITRARY F(t)

tn' tn' 5/ 6

eve t__ . _)

f

3 4

9 ll '0 7.

PTRAWN(n, tll 2 PERIODIC ARBITRARY
I t2 F(t)=yPULSE TRAIN

¥2' ?3' Y3'

o.* tn, Yn) 5 6

TABLE O0 STANDARD EXCITATION'i FUNCTIONS (CONT'D)

, c x A \ D T N i: C/ A--
TYPE DJA7i-ATCAi i NI

lIF(t) d2 = INVERSE C-: TiME CONSTA;;T

FEP(d d) EXPONENTIAL F) -d2e
2) FUNCTICN

0 TI6ME

i]i
tH

j STEP (d, d2) DELAYED S7? rO0, 0 < t < d2

10.Jl, t > d2 d2

' .'
...~. ~ ,~,,'

F(t)A d2 = ' - TM
dt3 P= ASE CYCLE

DrFSl (d, d2 , d3 DELAYED SINUSOID 0O 0 < t) ;
d4) dl sin(d 2 (t-d 4)+d 3), >- 'd4 , Ti'

CRAPAM'P (dI d2) DELAYED RAMP

dl(t-d2),t > ' 2OOI

F(t), d l = SLPE

T- ',-

~��I" *�"I�U~U"--" '�II---`- -�r-------?-- t-D--·--·----··--�--01-�-- �- -- IY-�sYT �U·rr�-·----L-C- C-

TABLE OF STAF7D ARD EXCiTATLrQ1Oil FUNC-TON', ((CONT:D)

TYPE = AI- -T -- A
AR GUM, E TS DESCRIPTICN

0,0 _< t<d2& > d 3 3 d

DPULSE (di, d2 , d3) DELAYED PULSE F(t W
:d 1 , d2 _ < d3

" 2 d3 ThIV;; -

d(t) A d2 = N V RS- PI i 2 CC"ST 'rT

DELAYED -d2 -d3)
DEX? (d1 , d2 , d 3) EXPONENTIAL F(t) = dle

WS./~

d2 = . OF'. Cg;STA>7

NO (t)Aj d3 = .FR...;N Cy, A.-IAUlS/SEC

di

'd t,:.

DAMP (di, d2 , d3 DAMPED SINUSODD FNt) = die s in d3 t ; - - -

_d2.~~~~~ i/, fi'l a "

\i' II VI' iv,

U /-

.4

ZERO FOR
AtLL TIME

F (t)

�-�P"-�--p--a----i - ----··--·---b -- ---·I PU-�I

F() = 0ZERO

REFERENCES

(1) H. Trauboth and N. Prasad, "MiARSYAS-A Software System for
the Digital Simulation of Physical Systems, " Proc. of Spring
Joint Computer Conference, May 1970.

(2) N. Prasad and J. Reiss, "The Digital Simulation of Interconnected
Systems," Proc. of International Association of Cybernetics

Conference, Namur, Belgium, Septenmber 1970.

(3) H. Trauboth and N. Prasad, "MARSYAS-A Software Engineering

System for the Digital Simulation and Analysis of Physical Systems,
International Federation of Automatic Control (IFAC), Budapest
Symposium on Digital Simulation of Continuous Process (DISCOP),

Gyor, Hungary, September 1971.

(4) N. Prasad and H. Gabow, "ADEPT-An Algebraic and Differential
Equations Processor and Translator, i' Proc. of the 1971 Summer

Computer Simulation Conference, pp. 50-63, Vol. 1, Boston,

Massachusetts, July 1971.

(5) S. P. Singh, "Digital Simulation of Serpentuator Using MARSYAS,"
NASA TR R-414, Computation Laboratory, Marshall Space Flight
Center, Alabama, December 1972.

178

BIBLIOGRAPHIC DATA |1. Report No. 12. 3. Recipient's Accession No.
SHEET EERC 72-12 fg -<2 _Z e Z d 7

4. Title and Subtitle 5. Report Date

SHAKE: a computer program for earthquake response anslysis December 1972

of horizontally layered sites 6.

7. Author(s) 8. Performing Organization Rept.A() Per B. Schnabel, John Lysmer and H. Bolton Seed 8 .Performing Organization Rept.

9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

University of California
Earthquake Engineering Research Center 11. Contract/Grant No.

1301 South 46th Street
Richmond, Calif. 94804

12. Sponsoring Organization Name and Address 13. Type of Report & Period
Covered

National Science Foundation
1800 G Street

14.Washington, D.C. 20550 14.

15. Supplementary Notes

16. Abstracts
The program computes the response in a horizontally layered soil rock sys-

tem subjected to transient, vertical travelling shear waves. The method is based on
Kanai's solution to the wave equation and the Fast Fourier Transform algorithm. The
motion used as basis for the analysis can be applied to any layer in the system. Sys-
tems with elastic base and with variable damping in each layer can be analyzed. Equiv-
alent linear soil properties are used with an iterative procedure to obtain soil prop-
erties compatible with the strains developed in each layer. A varied set of opera-
tions of interest in earthquake response analysis can be performed.

17. Key Words and Document Analysis. 17a. Descriptors

17b. Identifiers/Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement

Release unlimited

-OR -TSS RV -2 HSFR A ERPOUE
FORM NTIS-35 (REV. 3-72)

THIS FORM MAY BE REPRODUCED

INSTRUCTIONS FOR COMPLETING FORM NTIS-35 (10-70) (Bibliographic Data Sheet based on COSATI

Guidelines to Format Standards for Scientific and Technical Reports Prepared by or for the Federal Government,

PB- 180 600).

1. Report Number. Each individually bound report shall carry a unique alphanumeric desigation selected by the performing

organization or provided by the sponsoring organization. Use uppercase letters and Arbic numerals only. Examples

FASEB-NS-87 and FAA-RD-68-09. /
/

2. Leave blank.

3. Recipient's Accession Numbr. Reserved for use by each report recipient.

4. Title and Subtitle. Title should\indicate clearly and briefly the subject coverage of the report, and be displayed promi-

nently. Set subtitle, if used, in smaller type or otherwise subordinate it to main title. When a report is prepared in more

than one volume, repeat the primary. title, add volume number and include subtitle for the specific volume.

5. Report Date. Each report shall carry date indicating at least month and yeL. Indicate the basis on which it was selected

(e.g., date of issue, date of approval, d e of preparation.

6. Performing Organization Code. Leave blan

7. Author(s). Give name(s) in conventional rder e.g., John R. Doe, orJ.Robert Doe). List author's affiliation if it differs

from the performing organization.

8. Performing Organization Report Number. Insert if p forming organ/ation wishes to assign this number.

9. Performing Organization Name and Address. Give name, street, c y, state, and zip code. List no more than two levels of

an organizational hierarchy. Display the name of the or anizatio exactly as it should appear in Government indexes such

as USGRDR-I.

10. Project/Task/Work Unit Number. Use the project, task andok unit numbers under which the report was prepared.

11. Contract/Grant Number. Insert contract or grant number unde hich report was prepared.

12. Sponsoring Agency Name and Address. Include zip code. /

13. Type of Report and Period Covered. Indicate interim, fin/ etc., ad, if applicable, dates covered.

14. Sponsoring Agency Code. Leave blank. /

15. Supplementary Notes. Enter information not included /elsewhere but us ful, such as: Prepared in cooperation with . . .

Translation of . . . Presented at conference of . . . T1 be published in . Supersedes Supplements . . .

16. Abstract. Include a brief (200 words or less) factual summary of the most Xgnificant information contained in the report.

If the report contains a significant bibliography or literature survey, mention it here.

17. Key Words and Document Analysis. (a). Descriptors. Select from the Thesaurus of Engineering and Scientific Terms the

proper authorized terms that identify the major concept of the research and are suffciently specific and precise to be used

as index entries for cataloging.
(b). Identifiers and Open-Ended Terms. Use identifiers for project names, code nams, equipment designators, etc. Use

open-ended terms written in descriptor form for those subjects for which no descriptor enists.

(c). COSATI Field/Group. Field and Group assignments are to be taken from the 196 COSATI Subject Category List.

Since the majority of documents are multidisciplinary in nature, the primary Field/Group a signment(s) will be the specific

discipline, area of human endeavor, or type of physical object. The application(s) will be c oss-referenced with secondary

Field/Group assignments that will follow the primary posting(s).

18. Distribution Statement. Denote releasability to the public or limitation for reasons other than security for example "Re-

lease unlimited". Cite any availability to the public, with address and price.

19 & 20. Security Classification. Do not submit classified reports to the National Technical

21. Number of Pages. Inscrt the total numbcr of pages, including this one and unnumbered pages, hut excluding distribution

list, if any.

22. Price. Insert the price set by the National Technical Information Service or the Government Printing Office, if known.

FOM T~-3 (EV 5'~ UCOM C 4 5 2-7
USCOMIM-DC 14952-P72FORM NTIS-35 (REV* 3-Z2L

-

EARTHQUAKE ENGINEERING RESEARCH CENTER

SHAKE
A COMPUTER PROGRAM FOR

EARTHQUAKE RESPONSE ANALYSIS

OF HORIZONTALLY LAYERED SITES

by

Per B. Schnabel

John Lysmer

H. Bolton Seed

A report on research sponsored by the
National Science Foundation

Report No. EERC 72-12

December 1972

College of Engineering
University of California

Berkeley, California

